A258379 O.g.f. satisfies A^4(z) = 1/(1 - z)*( BINOMIAL(BINOMIAL(A(z))) )^3.
1, 7, 73, 1071, 21249, 549927, 17907177, 709326255, 33202983873, 1794040660359, 109844961440841, 7511188035994479, 567027585432472641, 46818521577433459239, 4195842793686119552361, 405529683304196611790703, 42039822952112350680798849, 4652599937163116610404900871
Offset: 0
Examples
a(n) (mod 3) = (1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0, 0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0, 0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0, 0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,...). - _Peter Bala_, Dec 06 2017
Links
- N. J. A. Sloane, Transforms.
Programs
-
Maple
#A258379 with(combinat): #recursively define the row polynomials R(n,x) of A145901 R := proc (n, x) option remember; if n = 0 then 1 else 1 + x*add(binomial(n, i)*2^(n-i)*R(i,x), i = 0..n-1) end if; end proc: #define a family of sequences depending on an integer parameter k a := proc (n, k) option remember; if n = 0 then 1 else 1/n*add(R(i+1,k)*a(n-1-i,k), i = 0..n-1) end if; end proc: # display the case k = 3 seq(a(n,3), n = 0..17);
-
Mathematica
R[n_, x_] := R[n, x] = If[n == 0, 1, 1 + x*Sum[Binomial[n, i]*2^(n - i)*R[i, x], {i, 0, n - 1}]]; a[n_, k_] := a[n, k] = If[n == 0, 1, 1/n*Sum[R[i + 1, k]*a[n - 1 - i, k], {i, 0, n - 1}]]; a[n_] := a[n, 3]; a /@ Range[0, 17] (* Jean-François Alcover, Oct 02 2019 *)
Formula
a(0) = 1 and for n >= 1, a(n) = 1/n*Sum_{i = 0..n-1} R(i+1,3)*a(n-1-i), where R(n,x) denotes the n-th row polynomial of A145901.
O.g.f.: A(z) = 1 + 7*z + 73*z^2 + 1071*z^3 + 21249*z^4 + ... satisfies A^4(z) = 1/(1 - z)*1/(1 - 2*z)^3*A^3(z/(1 - 2*z)).
O.g.f.: A(z) = exp( Sum_{k >= 1} R(k,3)*z^k/k ).
From Peter Bala, Dec 06 2017: (Start)
a(n) appears to be always odd. Calculation suggests that for k = 1,2,3,..., the sequence a(n) (mod 2^k) is purely periodic with period length a divisor of 2^(k-1). For example, a(n) (mod 4) = (1,3,1,3,...) seems to be purely periodic with period 2, a(n) (mod 8) = (1,7,1,7,...) seems to be purely periodic also with period 2 while a(n) (mod 16) = (1,7,9,15,1,7,9,15,...) seems to be purely periodic with period 4 (all three checked up to n = 1000).
The sequences a(n) (mod k), for other values of k, appear to have interesting but more complicated patterns. An example is given below.
(End)
a(n) ~ (n-1)! * 2^(n-1) / (sqrt(3) * log(4/3)^(n+1)). - Vaclav Kotesovec, May 28 2025
Comments