A258387 a(n) = (n+1)^n + n^(n-1).
3, 11, 73, 689, 8401, 125425, 2214801, 45143873, 1043046721, 26937424601, 768945795289, 24041093493169, 817012858376625, 29986640798644769, 1182114430632237601, 49814113380273715457, 2234572751614363400449, 106313261857649938064809
Offset: 1
Examples
For n=3 the a(3) = 73. (3+1)^3 + 3^(3-1) = 4^3 + 3^2. 4^3 + 3^2 = 64 + 9 = 73.
Links
- Daniel Suteu, Table of n, a(n) for n = 1..20
Programs
-
Magma
[(n+1)^n + n^(n-1): n in [1..20]]; // Vincenzo Librandi, May 29 2015
-
Mathematica
Array[(# + 1)^# + #^(# - 1) &, 20] (* Vincenzo Librandi, May 29 2015 *)
-
PARI
vector(10,n,(n+1)^n+n^(n-1)) \\ Derek Orr, Jun 01 2015
-
Sidef
func a(n) { (n+1)**n + n**(n-1) }; 1.to(Math.inf).each { |n| say a(n); };
Formula
a(n) = (n+1)^n + n^(n-1).