A258390 Number of 2n-length strings of balanced parentheses of exactly 2 different types that are introduced in ascending order.
2, 15, 98, 630, 4092, 27027, 181610, 1239810, 8582756, 60138078, 425800564, 3042175500, 21906338040, 158830645635, 1158564772890, 8496271312650, 62604582047700, 463275674416170, 3441483002640540, 25654715940496500, 191852749820189640, 1438895966711035950
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..1000
Crossrefs
Column k=2 of A253180.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<3, [0$2, 2][n+1], (2*n-1)*(6*n*a(n-1) -8*(2*n-3)*a(n-2))/(n*(n+1))) end: seq(a(n), n=2..25);
-
Mathematica
Table[(2^(n-1)-1)*Binomial[2n,n]/(n+1),{n,2,20}] (* Vaclav Kotesovec, Jun 01 2015 *)
Formula
a(n) = (2*n-1)*(6*n*a(n-1)-8*(2*n-3)*a(n-2))/(n*(n+1)) for n>2, a(2)=2, a(n)=0 for n<2.
a(n) = (2^(n-1)-1) * binomial(2n,n)/(n+1) = (2^(n-1)-1)*A000108(n). - Vaclav Kotesovec, Jun 01 2015