cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258405 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^5 dx.

Original entry on oeis.org

1, 3, 7, 8, 0, 1, 0, 7, 0, 8, 4, 6, 5, 5, 4, 6, 4, 2, 8, 4, 5, 3, 8, 6, 1, 3, 1, 4, 0, 2, 1, 9, 3, 8, 4, 3, 0, 8, 4, 5, 2, 2, 5, 4, 1, 2, 3, 2, 6, 2, 5, 9, 8, 2, 6, 8, 3, 9, 3, 7, 0, 0, 3, 7, 0, 9, 2, 4, 8, 6, 3, 1, 0, 7, 7, 3, 1, 8, 1, 7, 0, 4, 8, 9, 3, 6, 2, 9, 1, 7, 6, 9, 8, 5, 9, 2, 4, 3, 4, 4, 1, 4
Offset: 0

Views

Author

Vaclav Kotesovec, May 29 2015

Keywords

Examples

			0.137801070846554642845386131402193843084522541232625982683937003709248631...
		

Crossrefs

Programs

  • Maple
    evalf(Sum(Sum(2*Pi*(-1)^(h+m) / cosh(sqrt(7 - 4*h + 12*h^2 - 4*m + 12*m^2)*Pi/2), m=-infinity..infinity), h=-infinity..infinity), 120); # Vaclav Kotesovec, Dec 04 2015
  • Mathematica
    nmax=200; p=1; q5=Table[PrintTemporary[n]; p=Expand[p*(1-x^n)^5]; Total[CoefficientList[p,x]/Range[1,Exponent[p,x]+1]],{n,1,nmax}]; q5n=N[q5,1000]; Table[SequenceLimit[Take[q5n,j]],{j,Length[q5n]-100,Length[q5n],10}]
    nterms = 40; N[Sum[Sum[2*Pi*(-1)^(h+m) / Cosh[Sqrt[7 - 4*h + 12*h^2 - 4*m + 12*m^2]*Pi/2], {m, -nterms, nterms}], {h, -nterms, nterms}], 100] (* Vaclav Kotesovec, Dec 04 2015 *)
    RealDigits[NIntegrate[QPochhammer[x]^5, {x, 0, 1}, WorkingPrecision -> 120], 10, 106][[1]] (* Vaclav Kotesovec, Oct 10 2023 *)

Formula

Sum_{m = -infinity..infinity} (Sum_{h = -infinity..infinity} (2*Pi*(-1)^(h+m) / cosh(sqrt(7 - 4*h + 12*h^2 - 4*m + 12*m^2)*Pi/2))). - Vaclav Kotesovec, Dec 04 2015