cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A258232 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k) dx.

Original entry on oeis.org

3, 6, 8, 4, 1, 2, 5, 3, 5, 9, 3, 1, 4, 3, 3, 6, 5, 2, 3, 2, 1, 3, 1, 6, 5, 9, 7, 3, 2, 7, 8, 5, 1, 0, 1, 5, 0, 1, 4, 2, 4, 1, 3, 0, 3, 9, 2, 8, 8, 1, 9, 9, 6, 8, 3, 0, 3, 6, 1, 5, 8, 0, 6, 6, 8, 2, 8, 1, 4, 7, 3, 0, 0, 8, 8, 9, 0, 3, 4, 3, 9, 2, 9, 8, 9, 0, 6, 3, 4, 4, 2, 4, 2, 4, 1, 4, 9, 9, 2, 1, 7, 6, 7, 1, 2, 8
Offset: 0

Views

Author

Vaclav Kotesovec, May 24 2015

Keywords

Examples

			0.3684125359314336523213165973278510150142413039288199683036158...
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 424.

Crossrefs

Cf. A258406 (m=2), A258407 (m=3), A258404 (m=4), A258405 (m=5).

Programs

  • Maple
    evalf(8*sqrt(3/23)*Pi*sinh(sqrt(23)*Pi/6)/(2*cosh(sqrt(23)*Pi/3)-1), 123);
    evalf(Sum((-1)^n/((3*n-1)*n/2 + 1), n=-infinity..infinity), 123);
  • Mathematica
    RealDigits[N[8*Sqrt[3/23]*Pi*Sinh[Sqrt[23]*Pi/6] / (2*Cosh[Sqrt[23]*Pi/3]-1),120]][[1]]
  • PARI
    8*Pi*sqrt(3/23) * sinh(sqrt(23)*Pi/6) / (2*cosh(sqrt(23)*Pi/3) - 1) \\ Michel Marcus, Nov 28 2018

Formula

Equals 8*Pi*sqrt(3/23) * sinh(sqrt(23)*Pi/6) / (2*cosh(sqrt(23)*Pi/3) - 1).
From Amiram Eldar, Feb 04 2024: (Start)
Equals 2 * Sum_{k=-oo..oo} (-1)^k/(3*k^2 + k + 2).
Equals Sum_{k>=0} (-1)^A000120(k)/(A029931(k)+1) (Borwein and Borwein, 1992). (End)

A000728 Expansion of Product_{n>=1} (1-x^n)^5.

Original entry on oeis.org

1, -5, 5, 10, -15, -6, -5, 25, 15, -20, 9, -45, -5, 25, 20, 10, 15, 20, -50, -35, -30, 55, -50, 15, 80, 1, 50, -35, -45, -15, 5, -50, -25, -55, 85, 51, 50, 10, -40, 65, 10, -10, -115, 50, -115, -100, 85, 80, -30, 5, 20, 45, 70, 65, 45, -55, -100
Offset: 0

Views

Author

Keywords

References

  • Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A258405.

Programs

Formula

a(0) = 1, a(n) = -(5/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 26 2017
G.f.: exp(-5*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018

A258406 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^2 dx.

Original entry on oeis.org

2, 5, 3, 8, 7, 4, 0, 8, 2, 3, 7, 8, 2, 7, 6, 0, 0, 2, 9, 8, 8, 5, 0, 8, 8, 9, 3, 8, 1, 6, 3, 3, 2, 9, 1, 2, 3, 8, 4, 7, 6, 3, 6, 3, 4, 3, 1, 9, 3, 3, 1, 3, 5, 1, 4, 7, 5, 6, 0, 6, 7, 6, 0, 5, 8, 8, 6, 9, 6, 6, 3, 0, 9, 2, 7, 3, 5, 4, 6, 9, 1, 6, 8, 5, 9, 8, 1, 6, 6, 0, 3, 1, 4, 9, 6, 8, 3, 7, 8, 6, 5, 4, 1, 2, 5, 0
Offset: 0

Views

Author

Vaclav Kotesovec, May 29 2015

Keywords

Examples

			0.2538740823782760029885088938163329123847636343193313514756067...
		

Crossrefs

Programs

  • Maple
    evalf(Sum(Sum(8*(n+1)*(-1)^n / ((n^2 - 2*k^2 + 2*k*n + n + 2) * (n^2 - 2*k^2 + 2*k*n + 5*n + 6)), k=0..n), n=0..infinity), 120);
  • Mathematica
    RealDigits[NIntegrate[QPochhammer[x]^2, {x, 0, 1}, WorkingPrecision -> 120], 10, 106][[1]] (* Vaclav Kotesovec, Oct 10 2023 *)

Formula

Equals Sum_{n>=0} Sum_{k=0..n} 8*(n+1)*(-1)^n / ((n^2 - 2*k^2 + 2*k*n + n + 2) * (n^2 - 2*k^2 + 2*k*n + 5*n + 6)).
Equals Sum_{n>=0} Sum_{j=-floor(n/2)..floor(n/2)} (-1)^(n+j) / (n*(n+1)/2 - j*(3*j-1)/2 + 1).

A258404 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^4 dx.

Original entry on oeis.org

1, 6, 1, 8, 2, 0, 2, 4, 2, 2, 9, 4, 8, 5, 6, 5, 6, 1, 8, 0, 2, 6, 1, 3, 3, 4, 9, 8, 5, 7, 8, 6, 5, 3, 4, 3, 1, 3, 0, 6, 8, 5, 7, 8, 2, 8, 8, 0, 1, 8, 9, 9, 0, 3, 9, 8, 0, 4, 2, 9, 4, 5, 3, 5, 7, 9, 5, 3, 4, 1, 5, 3, 8, 0, 4, 3, 7, 1, 4, 8, 9, 6, 8, 8, 5, 3, 3, 7, 1, 2, 9, 9, 2, 1, 5, 8, 5, 4, 4, 8, 5, 2, 1, 8, 9, 9
Offset: 0

Views

Author

Vaclav Kotesovec, May 29 2015

Keywords

Examples

			0.16182024229485656180261334985786534313068578288018990398...
		

Crossrefs

Programs

  • Maple
    evalf(Sum((2*Pi*(-1)^m / cosh(sqrt(7 - 4*m + 12*m^2)*Pi/2)), m=-infinity..infinity), 120); # Vaclav Kotesovec, Dec 04 2015
  • Mathematica
    nmax=200; p=1; q4=Table[PrintTemporary[n]; p=Expand[p*(1-x^n)^4]; Total[CoefficientList[p,x]/Range[1,Exponent[p,x]+1]],{n,1,nmax}]; q4n=N[q4,1000]; Table[SequenceLimit[Take[q4n,j]],{j,Length[q4n]-100,Length[q4n],10}]
    NSum[2*(-1)^m*Pi/Cosh[Sqrt[7 - 4*m + 12*m^2]*Pi/2], {m, -Infinity, Infinity}, WorkingPrecision -> 120, NSumTerms -> 100] (* Vaclav Kotesovec, Dec 04 2015 *)
    RealDigits[NIntegrate[QPochhammer[x]^4, {x, 0, 1}, WorkingPrecision -> 120], 10, 106][[1]] (* Vaclav Kotesovec, Oct 10 2023 *)
  • PARI
    default(realprecision, 93);
    b(n) = cosh(sqrt(7 - 4*n + 12*n^2)*Pi/2);
    2*Pi*(1/b(0) + sumalt(n=1, (-1)^n*(1/b(n) + 1/b(-n)))) \\ Gheorghe Coserea, Sep 26 2018

Formula

Sum_{m = -infinity..infinity} (2*Pi*(-1)^m / cosh(sqrt(7 - 4*m + 12*m^2)*Pi/2)). - Vaclav Kotesovec, Dec 04 2015

Extensions

More digits from Vaclav Kotesovec, Oct 10 2023

A258407 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^3 dx.

Original entry on oeis.org

1, 9, 6, 8, 8, 0, 6, 1, 5, 3, 1, 4, 5, 8, 8, 9, 7, 5, 3, 5, 3, 3, 5, 1, 3, 5, 8, 4, 7, 6, 9, 6, 6, 6, 8, 2, 9, 6, 6, 7, 3, 4, 3, 1, 7, 8, 3, 9, 1, 7, 5, 7, 5, 8, 6, 0, 9, 3, 3, 5, 7, 0, 6, 2, 6, 8, 9, 9, 0, 1, 5, 1, 1, 1, 1, 0, 5, 6, 2, 0, 9, 2, 2, 2, 9, 0, 5, 1, 0, 6, 0, 2, 7, 8, 3, 7, 4, 5, 6, 7, 3, 5, 4, 1, 8, 3
Offset: 0

Views

Author

Vaclav Kotesovec, May 29 2015

Keywords

Comments

In general, Integral_{x=0..1} Product_{k>=1} (1-x^(m*k))^3 dx = Sum_{n>=0} (-1)^n * (2*n+1) / (m*n*(n+1)/2 + 1) is equal to
if 0
if m = 8: Pi/4
if m > 8: 2*Pi / (m * cos((Pi/2)*sqrt(1-8/m)))
Special values: m=4: Pi/(2*cosh(Pi/2)), m=9: 4*Pi/(9*sqrt(3)).
---
Integral_{x=-1..1} Product_{k>=1} (1-x^k)^3 dx = 2*Pi*(1 + sqrt(2) * cosh(sqrt(7)*Pi/4)) / cosh(sqrt(7)*Pi/2) = 1.32639350417409769439126... . - Vaclav Kotesovec, Jun 02 2015

Examples

			0.1968806153145889753533513584769666829667343178391757586093357...
		

Crossrefs

Programs

  • Maple
    evalf(2*Pi/cosh(sqrt(7)*Pi/2), 120);
    evalf(Sum((-1)^n * (2*n+1) / (n*(n+1)/2 + 1), n=0..infinity), 120);
  • Mathematica
    RealDigits[2*Pi*Sech[(Sqrt[7]*Pi)/2],10,105][[1]]
  • PARI
    2*Pi/cosh((sqrt(7)*Pi)/2) \\ Stefano Spezia, Aug 23 2025

Formula

Equals 2*Pi/cosh(sqrt(7)*Pi/2).
Equals Sum_{n>=0} (-1)^n * (2*n+1) / (n*(n+1)/2 + 1).
Showing 1-5 of 5 results.