cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000727 Expansion of Product_{k >= 1} (1 - x^k)^4.

Original entry on oeis.org

1, -4, 2, 8, -5, -4, -10, 8, 9, 0, 14, -16, -10, -4, 0, -8, 14, 20, 2, 0, -11, 20, -32, -16, 0, -4, 14, 8, -9, 20, 26, 0, 2, -28, 0, -16, 16, -28, -22, 0, 14, 16, 0, 40, 0, -28, 26, 32, -17, 0, -32, -16, -22, 0, -10, 32, -34, -8, 14, 0, 45, -4, 38, 8, 0, 0, -34, -8, 38, 0, -22, -56, 2, -28, 0, 0, -10, 20, 64, -40, -20, 44
Offset: 0

Views

Author

Keywords

Comments

Number 51 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan (see the link, pp. 155 and 157 Nr. 23.) conjectured the expansion coefficients called Psi_4(n) of eta^4(6*z) in powers of q = exp(2*Pi*i*z), Im(z) > 0, where i is the imaginary unit. In the Finch link on p. 5, multiplicity is used and Psi_4(p^r), called f(p^r), is given (see also b(p^e) formula given by Michael Somos, Aug 23 2006). Mordell proved this conjecture on pp. 121-122 based on Klein-Fricke, Theorie der elliptischen Modulfunktionen, 1892, Band II, p. 374. The product formula for the Dirichlet series, Mordell, eq. (7) for a=2,is used to find Psi_4(n), called f_2(n), from f_2(p) for primes p. The primes p = 2 and 3 do not appear in the product. - Wolfdieter Lang, May 03 2016

Examples

			G.f. = 1 - 4*x + 2*x^2 + 8*x^3 - 5*x^4 - 4*x^5 - 10*x^6 + 8*x^7 + 9*x^8 + ...
G.f. = q - 4*q^7 + 2*q^13 + 8*q^19 - 5*q^25 - 4*q^31 - 10*q^37 + 8*q^43 + ...
		

References

  • Morris Newman, A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
  • J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, p. 415. Exer. 47.2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Julia
    # DedekindEta is defined in A000594.
    L000727List(len) = DedekindEta(len, 4)
    L000727List(82) |> println # Peter Luschny, Mar 09 2018
    
  • Magma
    qEigenform( EllipticCurve( [0, 0, 0, 0, 1]), 493); /* Michael Somos, Jun 12 2014 */
    
  • Magma
    A := Basis( ModularForms( Gamma0(36), 2), 493); A[2] - 4*A[8]; /* Michael Somos, Jun 12 2014 */
    
  • Magma
    Basis( CuspForms( Gamma0(36), 2), 493)[1]; /* Michael Somos, May 17 2015 */
    
  • Magma
    Coefficients(&*[(1-x^m)^4:m in [1..100]])[1..100] where x is PolynomialRing(Integers()).1; // Vincenzo Librandi, Mar 10 2018
  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> -4): seq(a(n), n=0..81); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a = etr[-4&]; Table[a[n], {n, 0, 81}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^4, {x, 0, n}]; (* Michael Somos, Jun 12 2014 *)
    nmax = 80; CoefficientList[Series[Sum[Sum[(-1)^(k+m) * (2*k+1) * q^(k*(k+1)/2 + m*(3*m-1)/2), {k, 0, nmax}], {m, -nmax, nmax}], {q, 0, nmax}], q] (* Vaclav Kotesovec, Dec 06 2015 *)
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 6*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p<5, 0, p%6==5, if(e%2, 0, (-1)^(e/2) * p^(e/2)), for( y=1, sqrtint(p\3), if( issquare( p - 3*y^2, &x), break)); a0=1; if( x%3!=1, x=-x); a1 = x = 2*x; for( i=2, e, y = x*a1 - p*a0; a0=a1; a1=y); a1)))}; /* Michael Somos, Aug 23 2006 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff(eta(x + x * O(x^n))^4, n))};
    
  • PARI
    {a(n) = if( n<0, 0, ellak( ellinit( [0, 0, 0, 0, 1], 1), 6*n + 1))}; /* Michael Somos, Jul 01 2004 */
    
  • Sage
    ModularForms( Gamma0(36), 2, prec=493).0; # Michael Somos, Jun 12 2014
    

Formula

Euler transform of period 1 sequence [-4, -4, ...]. - Michael Somos, Apr 02 2005
Given g.f. A(x), then B(q) = q * A(q^3)^2 satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = w*u^2 - v^3 + 16 * u*w^2. - Michael Somos, Apr 02 2005
a(n) = b(6*n + 1) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)), b(p) = 0 if p == 5 (mod 6), b(p) = 2*x where p = x^2 + 3*y^2 == 1 (mod 6) and x == 1 (mod 3). - Michael Somos, Aug 23 2006
Coefficients of L-series for elliptic curve "36a1": y^2 = x^3 + 1. - Michael Somos, Jul 01 2004
a(n) = (-1)^n * A187076(n). a(2*n + 1) = -4 * A187150(n). a(25*n + 9) = a(25*n + 14) = a(25*n + 19) = a(25*n + 24) = 0. a(25*n + 4) = -5 * a(n). Convolution inverse of A023003. Convolution square of A002107. Convolution square is A000731.
a(0) = 1, a(n) = -(4/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 26 2017
G.f.: exp(-4*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
Let M = p_1*...*p_k be a positive integer whose prime factors p_i (not necessarily distinct) are all congruent to 5 (mod 6). Then a( M^2*n + (M^2 - 1)/6 ) = (-1)^k*M*a(n). See Cooper et al., equation 4. - Peter Bala, Dec 01 2020
a(n) = b(6*n + 1) where b() is multiplicative with b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * (-p)^(e/2) if p == 2 (mod 3), b(p^e) = (((x+sqrt(-3)*y)/2)^(e+1) - ((x-sqrt(-3)*y)/2)^(e+1))/x if p == 1 (mod 3) where p = x^2 + 3*y^2 and x == 1 (mod 3). - Jianing Song, Mar 19 2022

A258232 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k) dx.

Original entry on oeis.org

3, 6, 8, 4, 1, 2, 5, 3, 5, 9, 3, 1, 4, 3, 3, 6, 5, 2, 3, 2, 1, 3, 1, 6, 5, 9, 7, 3, 2, 7, 8, 5, 1, 0, 1, 5, 0, 1, 4, 2, 4, 1, 3, 0, 3, 9, 2, 8, 8, 1, 9, 9, 6, 8, 3, 0, 3, 6, 1, 5, 8, 0, 6, 6, 8, 2, 8, 1, 4, 7, 3, 0, 0, 8, 8, 9, 0, 3, 4, 3, 9, 2, 9, 8, 9, 0, 6, 3, 4, 4, 2, 4, 2, 4, 1, 4, 9, 9, 2, 1, 7, 6, 7, 1, 2, 8
Offset: 0

Views

Author

Vaclav Kotesovec, May 24 2015

Keywords

Examples

			0.3684125359314336523213165973278510150142413039288199683036158...
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 424.

Crossrefs

Cf. A258406 (m=2), A258407 (m=3), A258404 (m=4), A258405 (m=5).

Programs

  • Maple
    evalf(8*sqrt(3/23)*Pi*sinh(sqrt(23)*Pi/6)/(2*cosh(sqrt(23)*Pi/3)-1), 123);
    evalf(Sum((-1)^n/((3*n-1)*n/2 + 1), n=-infinity..infinity), 123);
  • Mathematica
    RealDigits[N[8*Sqrt[3/23]*Pi*Sinh[Sqrt[23]*Pi/6] / (2*Cosh[Sqrt[23]*Pi/3]-1),120]][[1]]
  • PARI
    8*Pi*sqrt(3/23) * sinh(sqrt(23)*Pi/6) / (2*cosh(sqrt(23)*Pi/3) - 1) \\ Michel Marcus, Nov 28 2018

Formula

Equals 8*Pi*sqrt(3/23) * sinh(sqrt(23)*Pi/6) / (2*cosh(sqrt(23)*Pi/3) - 1).
From Amiram Eldar, Feb 04 2024: (Start)
Equals 2 * Sum_{k=-oo..oo} (-1)^k/(3*k^2 + k + 2).
Equals Sum_{k>=0} (-1)^A000120(k)/(A029931(k)+1) (Borwein and Borwein, 1992). (End)

A258406 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^2 dx.

Original entry on oeis.org

2, 5, 3, 8, 7, 4, 0, 8, 2, 3, 7, 8, 2, 7, 6, 0, 0, 2, 9, 8, 8, 5, 0, 8, 8, 9, 3, 8, 1, 6, 3, 3, 2, 9, 1, 2, 3, 8, 4, 7, 6, 3, 6, 3, 4, 3, 1, 9, 3, 3, 1, 3, 5, 1, 4, 7, 5, 6, 0, 6, 7, 6, 0, 5, 8, 8, 6, 9, 6, 6, 3, 0, 9, 2, 7, 3, 5, 4, 6, 9, 1, 6, 8, 5, 9, 8, 1, 6, 6, 0, 3, 1, 4, 9, 6, 8, 3, 7, 8, 6, 5, 4, 1, 2, 5, 0
Offset: 0

Views

Author

Vaclav Kotesovec, May 29 2015

Keywords

Examples

			0.2538740823782760029885088938163329123847636343193313514756067...
		

Crossrefs

Programs

  • Maple
    evalf(Sum(Sum(8*(n+1)*(-1)^n / ((n^2 - 2*k^2 + 2*k*n + n + 2) * (n^2 - 2*k^2 + 2*k*n + 5*n + 6)), k=0..n), n=0..infinity), 120);
  • Mathematica
    RealDigits[NIntegrate[QPochhammer[x]^2, {x, 0, 1}, WorkingPrecision -> 120], 10, 106][[1]] (* Vaclav Kotesovec, Oct 10 2023 *)

Formula

Equals Sum_{n>=0} Sum_{k=0..n} 8*(n+1)*(-1)^n / ((n^2 - 2*k^2 + 2*k*n + n + 2) * (n^2 - 2*k^2 + 2*k*n + 5*n + 6)).
Equals Sum_{n>=0} Sum_{j=-floor(n/2)..floor(n/2)} (-1)^(n+j) / (n*(n+1)/2 - j*(3*j-1)/2 + 1).

A258405 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^5 dx.

Original entry on oeis.org

1, 3, 7, 8, 0, 1, 0, 7, 0, 8, 4, 6, 5, 5, 4, 6, 4, 2, 8, 4, 5, 3, 8, 6, 1, 3, 1, 4, 0, 2, 1, 9, 3, 8, 4, 3, 0, 8, 4, 5, 2, 2, 5, 4, 1, 2, 3, 2, 6, 2, 5, 9, 8, 2, 6, 8, 3, 9, 3, 7, 0, 0, 3, 7, 0, 9, 2, 4, 8, 6, 3, 1, 0, 7, 7, 3, 1, 8, 1, 7, 0, 4, 8, 9, 3, 6, 2, 9, 1, 7, 6, 9, 8, 5, 9, 2, 4, 3, 4, 4, 1, 4
Offset: 0

Views

Author

Vaclav Kotesovec, May 29 2015

Keywords

Examples

			0.137801070846554642845386131402193843084522541232625982683937003709248631...
		

Crossrefs

Programs

  • Maple
    evalf(Sum(Sum(2*Pi*(-1)^(h+m) / cosh(sqrt(7 - 4*h + 12*h^2 - 4*m + 12*m^2)*Pi/2), m=-infinity..infinity), h=-infinity..infinity), 120); # Vaclav Kotesovec, Dec 04 2015
  • Mathematica
    nmax=200; p=1; q5=Table[PrintTemporary[n]; p=Expand[p*(1-x^n)^5]; Total[CoefficientList[p,x]/Range[1,Exponent[p,x]+1]],{n,1,nmax}]; q5n=N[q5,1000]; Table[SequenceLimit[Take[q5n,j]],{j,Length[q5n]-100,Length[q5n],10}]
    nterms = 40; N[Sum[Sum[2*Pi*(-1)^(h+m) / Cosh[Sqrt[7 - 4*h + 12*h^2 - 4*m + 12*m^2]*Pi/2], {m, -nterms, nterms}], {h, -nterms, nterms}], 100] (* Vaclav Kotesovec, Dec 04 2015 *)
    RealDigits[NIntegrate[QPochhammer[x]^5, {x, 0, 1}, WorkingPrecision -> 120], 10, 106][[1]] (* Vaclav Kotesovec, Oct 10 2023 *)

Formula

Sum_{m = -infinity..infinity} (Sum_{h = -infinity..infinity} (2*Pi*(-1)^(h+m) / cosh(sqrt(7 - 4*h + 12*h^2 - 4*m + 12*m^2)*Pi/2))). - Vaclav Kotesovec, Dec 04 2015

A258407 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^3 dx.

Original entry on oeis.org

1, 9, 6, 8, 8, 0, 6, 1, 5, 3, 1, 4, 5, 8, 8, 9, 7, 5, 3, 5, 3, 3, 5, 1, 3, 5, 8, 4, 7, 6, 9, 6, 6, 6, 8, 2, 9, 6, 6, 7, 3, 4, 3, 1, 7, 8, 3, 9, 1, 7, 5, 7, 5, 8, 6, 0, 9, 3, 3, 5, 7, 0, 6, 2, 6, 8, 9, 9, 0, 1, 5, 1, 1, 1, 1, 0, 5, 6, 2, 0, 9, 2, 2, 2, 9, 0, 5, 1, 0, 6, 0, 2, 7, 8, 3, 7, 4, 5, 6, 7, 3, 5, 4, 1, 8, 3
Offset: 0

Views

Author

Vaclav Kotesovec, May 29 2015

Keywords

Comments

In general, Integral_{x=0..1} Product_{k>=1} (1-x^(m*k))^3 dx = Sum_{n>=0} (-1)^n * (2*n+1) / (m*n*(n+1)/2 + 1) is equal to
if 0
if m = 8: Pi/4
if m > 8: 2*Pi / (m * cos((Pi/2)*sqrt(1-8/m)))
Special values: m=4: Pi/(2*cosh(Pi/2)), m=9: 4*Pi/(9*sqrt(3)).
---
Integral_{x=-1..1} Product_{k>=1} (1-x^k)^3 dx = 2*Pi*(1 + sqrt(2) * cosh(sqrt(7)*Pi/4)) / cosh(sqrt(7)*Pi/2) = 1.32639350417409769439126... . - Vaclav Kotesovec, Jun 02 2015

Examples

			0.1968806153145889753533513584769666829667343178391757586093357...
		

Crossrefs

Programs

  • Maple
    evalf(2*Pi/cosh(sqrt(7)*Pi/2), 120);
    evalf(Sum((-1)^n * (2*n+1) / (n*(n+1)/2 + 1), n=0..infinity), 120);
  • Mathematica
    RealDigits[2*Pi*Sech[(Sqrt[7]*Pi)/2],10,105][[1]]
  • PARI
    2*Pi/cosh((sqrt(7)*Pi)/2) \\ Stefano Spezia, Aug 23 2025

Formula

Equals 2*Pi/cosh(sqrt(7)*Pi/2).
Equals Sum_{n>=0} (-1)^n * (2*n+1) / (n*(n+1)/2 + 1).
Showing 1-5 of 5 results.