cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A010816 Expansion of Product_{k>=1} (1 - x^k)^3.

Original entry on oeis.org

1, -3, 0, 5, 0, 0, -7, 0, 0, 0, 9, 0, 0, 0, 0, -11, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, -15, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 0, 0, 0, 0, 0, -19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -27, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also, number of different partitions of n into parts of -3 different kinds (based upon formal analogy). - Michele Dondi (blazar(AT)lcm.mi.infn.it), Jun 29 2004

Examples

			G.f. = 1 - 3*x + 5*x^3 - 7*x^6 + 9*x^10 - 11*x^15 + 13*x^21 - 15*x^28 + ...
G.f. for b(n): = q - 3*q^9 + 5*q^25 - 7*q^49 + 9*q^81 - 11*q^121 + 13*q^169 + ...
		

References

  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 117, Problem 22.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.5.14).
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth ed., Clarendon Press, Oxford, 2003, p. 285, Theorem 357 (Jacobi).
  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.4, p. 410, Problem 23.
  • S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 267 MR0099904 (20 #6340)

Crossrefs

Programs

  • Julia
    # DedekindEta is defined in A000594.
    A010816List(len) = DedekindEta(len, 3)
    A010816List(39) |> println # Peter Luschny, Mar 10 2018
    
  • Maple
    S:= series(mul(1-x^k,k=1..200)^3,x,201):
    seq(coeff(S,x,j),j=0..200); # Robert Israel, Feb 01 2018
    A010816 := n -> if issqr(8*n+1) then isqrt(8*n+1); (-1)^iquo(%, 2) * % else 0 fi:
    seq(A010816(n), n=0..98); # Peter Luschny, Apr 17 2022
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticThetaPrime[ 1, 0, x^(1/2)] / (2 x^(1/8)), {x, 0, n}]; (* Michael Somos, Oct 22 2011 *)
    a[ n_] := With[ {m = 8 n + 1}, If[m > 0 && OddQ[ Length @ Divisors @ m], Sqrt[m] KroneckerSymbol[-4, Sqrt[m]], 0]];  (* Michael Somos, Aug 26 2015 *)
    CoefficientList[QPochhammer[q]^3 + O[q]^100, q] (* Jean-François Alcover, Nov 25 2015 *)
    a[ n_] := With[ {x = Sqrt[8 n + 1]}, If[ IntegerQ[ x], (-1)^Quotient[ x, 2] x, 0]]; (* Michael Somos, Feb 01 2018 *)
    a[ n_] := If[ n < 1, Boole[ n == 0], Times @@ (If[ # == 2 || OddQ[ #2], 0, (KroneckerSymbol[ -4, #] #)^(#2/2)] & @@@ FactorInteger[ 8 n + 1])]; (* Michael Somos, Feb 01 2018 *)
  • PARI
    {a(n) = my(x); if( n<0, 0, if( issquare( 8*n + 1, &x), (-1)^(x\2) * x))}; /* Michael Somos, Nov 08 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3, n))};
    
  • Python
    from sympy import integer_nthroot
    def A010816(n):
        a, b = integer_nthroot((n<<3)+1,2)
        return (-a if a&2 else a) if b else 0 # Chai Wah Wu, Nov 02 2024

Formula

G.f.: Product_{k>=1} (1-x^k)^3 = Sum_{n>=0} (-1)^n*(2*n+1)*x^(n*(n+1)/2) (Jacobi).
Given g.f. A(x), then q * A(q^8) = eta(q^8)^3 = theta_2(q^4)*theta_3*(q^4)*theta_4(q^4) / 2 = theta_1'(q^4) / (2*Pi). - Michael Somos, Nov 08 2005
Given g.f. A(x), then x*A(x)^8 is g.f. for A000594.
a(n) = b(8*n + 1) where b() is multiplicative with b(p^e) = 0 if e odd, b(2^e) = 0^e, b(p^e) = p^(e/2) if p == 1 (mod 4), b(p^e) = (-p)^(e/2) if p == 3 (mod 4). - Michael Somos, Aug 22 2006
Expansion of f(-x)^3 in powers of x where f() is a Ramanujan theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 2^(9/2) (t/i)^(3/2) f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 09 2007
a(3*n + 2) = a(5*n + 2) = a(5*n + 4) = a(9*n + 4) = a(9*n + 7) = 0. a(9*n + 1) = -3 * a(n). a(25*n + 3) = 5 * a(n). - Michael Somos, Sep 09 2007
a(3*n) = A116916(n).
a(n) = (t*(t+1)-2*n-1)*(t-r)*(-1)^(t+1), where t = floor(sqrt(2*(n+1))+1/2) and r = floor(sqrt(2*n)+1/2). - Mikael Aaltonen, Jan 17 2015
a(0) = 1, a(n) = -(3/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 26 2017
G.f.: exp(-3*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
G.f.: Product_{n >= 1} (1 - q^(4*n))^3 * (1 + q^(4*n-1))^(-3) * (1 - q^(4*n-2))^6 * (1 + q^(4*n-3))^(-3). - Peter Bala, Jun 07 2025

A258232 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k) dx.

Original entry on oeis.org

3, 6, 8, 4, 1, 2, 5, 3, 5, 9, 3, 1, 4, 3, 3, 6, 5, 2, 3, 2, 1, 3, 1, 6, 5, 9, 7, 3, 2, 7, 8, 5, 1, 0, 1, 5, 0, 1, 4, 2, 4, 1, 3, 0, 3, 9, 2, 8, 8, 1, 9, 9, 6, 8, 3, 0, 3, 6, 1, 5, 8, 0, 6, 6, 8, 2, 8, 1, 4, 7, 3, 0, 0, 8, 8, 9, 0, 3, 4, 3, 9, 2, 9, 8, 9, 0, 6, 3, 4, 4, 2, 4, 2, 4, 1, 4, 9, 9, 2, 1, 7, 6, 7, 1, 2, 8
Offset: 0

Views

Author

Vaclav Kotesovec, May 24 2015

Keywords

Examples

			0.3684125359314336523213165973278510150142413039288199683036158...
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 424.

Crossrefs

Cf. A258406 (m=2), A258407 (m=3), A258404 (m=4), A258405 (m=5).

Programs

  • Maple
    evalf(8*sqrt(3/23)*Pi*sinh(sqrt(23)*Pi/6)/(2*cosh(sqrt(23)*Pi/3)-1), 123);
    evalf(Sum((-1)^n/((3*n-1)*n/2 + 1), n=-infinity..infinity), 123);
  • Mathematica
    RealDigits[N[8*Sqrt[3/23]*Pi*Sinh[Sqrt[23]*Pi/6] / (2*Cosh[Sqrt[23]*Pi/3]-1),120]][[1]]
  • PARI
    8*Pi*sqrt(3/23) * sinh(sqrt(23)*Pi/6) / (2*cosh(sqrt(23)*Pi/3) - 1) \\ Michel Marcus, Nov 28 2018

Formula

Equals 8*Pi*sqrt(3/23) * sinh(sqrt(23)*Pi/6) / (2*cosh(sqrt(23)*Pi/3) - 1).
From Amiram Eldar, Feb 04 2024: (Start)
Equals 2 * Sum_{k=-oo..oo} (-1)^k/(3*k^2 + k + 2).
Equals Sum_{k>=0} (-1)^A000120(k)/(A029931(k)+1) (Borwein and Borwein, 1992). (End)

A258406 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^2 dx.

Original entry on oeis.org

2, 5, 3, 8, 7, 4, 0, 8, 2, 3, 7, 8, 2, 7, 6, 0, 0, 2, 9, 8, 8, 5, 0, 8, 8, 9, 3, 8, 1, 6, 3, 3, 2, 9, 1, 2, 3, 8, 4, 7, 6, 3, 6, 3, 4, 3, 1, 9, 3, 3, 1, 3, 5, 1, 4, 7, 5, 6, 0, 6, 7, 6, 0, 5, 8, 8, 6, 9, 6, 6, 3, 0, 9, 2, 7, 3, 5, 4, 6, 9, 1, 6, 8, 5, 9, 8, 1, 6, 6, 0, 3, 1, 4, 9, 6, 8, 3, 7, 8, 6, 5, 4, 1, 2, 5, 0
Offset: 0

Views

Author

Vaclav Kotesovec, May 29 2015

Keywords

Examples

			0.2538740823782760029885088938163329123847636343193313514756067...
		

Crossrefs

Programs

  • Maple
    evalf(Sum(Sum(8*(n+1)*(-1)^n / ((n^2 - 2*k^2 + 2*k*n + n + 2) * (n^2 - 2*k^2 + 2*k*n + 5*n + 6)), k=0..n), n=0..infinity), 120);
  • Mathematica
    RealDigits[NIntegrate[QPochhammer[x]^2, {x, 0, 1}, WorkingPrecision -> 120], 10, 106][[1]] (* Vaclav Kotesovec, Oct 10 2023 *)

Formula

Equals Sum_{n>=0} Sum_{k=0..n} 8*(n+1)*(-1)^n / ((n^2 - 2*k^2 + 2*k*n + n + 2) * (n^2 - 2*k^2 + 2*k*n + 5*n + 6)).
Equals Sum_{n>=0} Sum_{j=-floor(n/2)..floor(n/2)} (-1)^(n+j) / (n*(n+1)/2 - j*(3*j-1)/2 + 1).

A258404 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^4 dx.

Original entry on oeis.org

1, 6, 1, 8, 2, 0, 2, 4, 2, 2, 9, 4, 8, 5, 6, 5, 6, 1, 8, 0, 2, 6, 1, 3, 3, 4, 9, 8, 5, 7, 8, 6, 5, 3, 4, 3, 1, 3, 0, 6, 8, 5, 7, 8, 2, 8, 8, 0, 1, 8, 9, 9, 0, 3, 9, 8, 0, 4, 2, 9, 4, 5, 3, 5, 7, 9, 5, 3, 4, 1, 5, 3, 8, 0, 4, 3, 7, 1, 4, 8, 9, 6, 8, 8, 5, 3, 3, 7, 1, 2, 9, 9, 2, 1, 5, 8, 5, 4, 4, 8, 5, 2, 1, 8, 9, 9
Offset: 0

Views

Author

Vaclav Kotesovec, May 29 2015

Keywords

Examples

			0.16182024229485656180261334985786534313068578288018990398...
		

Crossrefs

Programs

  • Maple
    evalf(Sum((2*Pi*(-1)^m / cosh(sqrt(7 - 4*m + 12*m^2)*Pi/2)), m=-infinity..infinity), 120); # Vaclav Kotesovec, Dec 04 2015
  • Mathematica
    nmax=200; p=1; q4=Table[PrintTemporary[n]; p=Expand[p*(1-x^n)^4]; Total[CoefficientList[p,x]/Range[1,Exponent[p,x]+1]],{n,1,nmax}]; q4n=N[q4,1000]; Table[SequenceLimit[Take[q4n,j]],{j,Length[q4n]-100,Length[q4n],10}]
    NSum[2*(-1)^m*Pi/Cosh[Sqrt[7 - 4*m + 12*m^2]*Pi/2], {m, -Infinity, Infinity}, WorkingPrecision -> 120, NSumTerms -> 100] (* Vaclav Kotesovec, Dec 04 2015 *)
    RealDigits[NIntegrate[QPochhammer[x]^4, {x, 0, 1}, WorkingPrecision -> 120], 10, 106][[1]] (* Vaclav Kotesovec, Oct 10 2023 *)
  • PARI
    default(realprecision, 93);
    b(n) = cosh(sqrt(7 - 4*n + 12*n^2)*Pi/2);
    2*Pi*(1/b(0) + sumalt(n=1, (-1)^n*(1/b(n) + 1/b(-n)))) \\ Gheorghe Coserea, Sep 26 2018

Formula

Sum_{m = -infinity..infinity} (2*Pi*(-1)^m / cosh(sqrt(7 - 4*m + 12*m^2)*Pi/2)). - Vaclav Kotesovec, Dec 04 2015

Extensions

More digits from Vaclav Kotesovec, Oct 10 2023

A258405 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^5 dx.

Original entry on oeis.org

1, 3, 7, 8, 0, 1, 0, 7, 0, 8, 4, 6, 5, 5, 4, 6, 4, 2, 8, 4, 5, 3, 8, 6, 1, 3, 1, 4, 0, 2, 1, 9, 3, 8, 4, 3, 0, 8, 4, 5, 2, 2, 5, 4, 1, 2, 3, 2, 6, 2, 5, 9, 8, 2, 6, 8, 3, 9, 3, 7, 0, 0, 3, 7, 0, 9, 2, 4, 8, 6, 3, 1, 0, 7, 7, 3, 1, 8, 1, 7, 0, 4, 8, 9, 3, 6, 2, 9, 1, 7, 6, 9, 8, 5, 9, 2, 4, 3, 4, 4, 1, 4
Offset: 0

Views

Author

Vaclav Kotesovec, May 29 2015

Keywords

Examples

			0.137801070846554642845386131402193843084522541232625982683937003709248631...
		

Crossrefs

Programs

  • Maple
    evalf(Sum(Sum(2*Pi*(-1)^(h+m) / cosh(sqrt(7 - 4*h + 12*h^2 - 4*m + 12*m^2)*Pi/2), m=-infinity..infinity), h=-infinity..infinity), 120); # Vaclav Kotesovec, Dec 04 2015
  • Mathematica
    nmax=200; p=1; q5=Table[PrintTemporary[n]; p=Expand[p*(1-x^n)^5]; Total[CoefficientList[p,x]/Range[1,Exponent[p,x]+1]],{n,1,nmax}]; q5n=N[q5,1000]; Table[SequenceLimit[Take[q5n,j]],{j,Length[q5n]-100,Length[q5n],10}]
    nterms = 40; N[Sum[Sum[2*Pi*(-1)^(h+m) / Cosh[Sqrt[7 - 4*h + 12*h^2 - 4*m + 12*m^2]*Pi/2], {m, -nterms, nterms}], {h, -nterms, nterms}], 100] (* Vaclav Kotesovec, Dec 04 2015 *)
    RealDigits[NIntegrate[QPochhammer[x]^5, {x, 0, 1}, WorkingPrecision -> 120], 10, 106][[1]] (* Vaclav Kotesovec, Oct 10 2023 *)

Formula

Sum_{m = -infinity..infinity} (Sum_{h = -infinity..infinity} (2*Pi*(-1)^(h+m) / cosh(sqrt(7 - 4*h + 12*h^2 - 4*m + 12*m^2)*Pi/2))). - Vaclav Kotesovec, Dec 04 2015
Showing 1-5 of 5 results.