cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A282937 a(n) = A000728(5*n).

Original entry on oeis.org

1, -6, 9, 10, -30, 1, 5, 51, 10, -100, 20, -55, 109, 110, -130, -1, -110, 160, 10, -230, 100, 15, 191, 120, -230, -100, -89, 160, 90, -340, 120, 5, 300, 200, -260, -1, -275, 240, -100, -270, 119, -165, 260, 410, -200, -40, 20, 200, -110, -500, 180, -54, 140
Offset: 0

Views

Author

Seiichi Manyama, Feb 25 2017

Keywords

Comments

This generalized function is related to two following identities; R(q^5) - q - q^2/R(q^5) = (q; q){infinity}/(q^25; q^25){infinity}, R^5(q^5) - 11*q^5 - q^10/R^5(q^5) = ((q^5; q^5){infinity}/(q^25; q^25){infinity})^6, where R(q) is the Rogers-Ramanujan continued function and (q; q)_n is the q-Pochhammer symbol. See the reference.

Examples

			G.f.: 1 - 6*q + 9*q^2 + 10*q^3 - 30*q^4 + q^5 + 5*q^6 + 51*q^7 + ...
		

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, See p. 185.

Crossrefs

Cf. A000728, A182821 (Product_{n>=1} (1 - q^(5*n))/(1 - q^n)^6), A282941.
Cf. Product_{n>=1} (1 - q^n)^(k+1)/(1 - q^(k*n)): A010815 (k=1), A115110 (k=2), A185654 (k=3), this sequence (k=5), A282942 (k=7).

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^j)^6/(1 - x^(5*j)): j in [1..(m+2)]]) )); // G. C. Greubel, Nov 18 2018
    
  • Mathematica
    CoefficientList[Series[Product[(1 - x^j)^6/(1 - x^(5*j)), {j,1,62}], {x,0,60}], x] (* G. C. Greubel, Nov 18 2018 *)
  • PARI
    m=60; x='x+O('x^m); Vec(prod(j=1,m+2, (1 - x^j)^6/(1 - x^(5*j)))) \\ G. C. Greubel, Nov 18 2018
    
  • Sage
    R = PowerSeriesRing(ZZ, 'x')
    prec = 60
    x = R.gen().O(prec)
    s = prod((1 - x^j)^6/(1 - x^(5*j)) for j in (1..prec))
    print(s.coefficients()) # G. C. Greubel, Nov 18 2018

Formula

G.f.: Product_{n>=1} (1 - q^n)^6/(1 - q^(5*n)).
a(n) = (-1)^j mod 5 if n = j*(3*j - 1)/2 for all j in Z; otherwise a(n) = 0 mod 5.
Sum_{k=0..n} a(k)*A182821(n-k) = 0 for n > 0. - Seiichi Manyama, Feb 28 2017
G.f.: exp( Sum_{n>=1} -sigma(5*n)*q^n/n ). - Seiichi Manyama, Mar 04 2017
a(n) = -(1/n)*Sum_{k=1..n} sigma(5*k)*a(n-k). - Seiichi Manyama, Mar 04 2017

A286354 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - x^j)^k.

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, -1, 0, 1, -3, -1, 0, 0, 1, -4, 0, 2, 0, 0, 1, -5, 2, 5, 1, 1, 0, 1, -6, 5, 8, 0, 2, 0, 0, 1, -7, 9, 10, -5, 0, -2, 1, 0, 1, -8, 14, 10, -15, -4, -7, 0, 0, 0, 1, -9, 20, 7, -30, -6, -10, 0, -2, 0, 0, 1, -10, 27, 0, -49, 0, -5, 8, 0, -2, 0, 0, 1, -11, 35, -12, -70, 21, 11, 25, 9, 0, 1, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, May 08 2017

Keywords

Comments

A(n,k) number of partitions of n into an even number of distinct parts minus number of partitions of n into an odd number of distinct parts with k types of each part.

Examples

			A(3,2) = 2 because we have [2, 1], [2', 1], [2, 1'], [2', 1'] (number of partitions of 3 into an even number of distinct parts with 2 types of each part), [3], [3'] (number of partitions of 3 into an odd number of distinct parts with 2 types of each part) and 4 - 2 = 2.
Square array begins:
1,  1,  1,  1,  1,   1,  ...
0, -1, -2, -3, -4,  -5,  ...
0, -1, -1,  0,  2,   5,  ...
0,  0,  2,  5,  8,  10,  ...
0,  0,  1,  0, -5, -15,  ...
0,  1,  2,  0, -4,  -6,  ...
		

Crossrefs

Main diagonal gives A008705.
Antidiagonal sums give A299105.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, -k*
          add(numtheory[sigma](j)*A(n-j, k), j=1..n)/n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 - x^i)^k , {i, Infinity}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[QPochhammer[x, x, Infinity]^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[(-1)^i*x^(i*(3*i + 1)/2), {i, -Infinity, Infinity}]^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} (1 - x^j)^k.
G.f. of column k: (Sum_{j=-inf..inf} (-1)^j*x^(j*(3*j+1)/2))^k.
Column k is the Euler transform of period 1 sequence [-k, -k, -k, ...].

A302057 Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1 - x^j)^5 is zero.

Original entry on oeis.org

1560, 1802, 1838, 2318, 2690, 3174, 3742, 3925, 4348, 4710, 4854, 5002, 5092, 5210, 7484, 7615, 8796, 8846, 9500, 10345, 12110, 14178, 14972, 16203, 18010, 19314, 20207, 20406, 20679, 24566, 25231, 27403, 27532, 28361, 31567, 31573, 35610, 35795, 37347
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 31 2018

Keywords

Comments

Numbers k such that number of partitions of k into an even number of distinct parts equals number of partitions of k into an odd number of distinct parts, with 5 types of each part.

Crossrefs

Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1 - x^j)^m is zero: A090864 (m = 1), A213250 (m = 2), A014132 (m = 3), A302056 (m = 4), this sequence (m = 5), A020757 (m = 6), A322043 (m = 15).
Cf. A000728.

Programs

  • Mathematica
    Flatten[Position[nmax = 38000; Rest[CoefficientList[Series[QPochhammer[x]^5, {x, 0, nmax}], x]], 0]]
    Flatten[Position[nmax = 38000; Rest[CoefficientList[Series[Sum[(-1)^j x^(j (3 j + 1)/2), {j, -nmax, nmax}]^5, {x, 0, nmax}], x]], 0]]
    Flatten[Position[nmax = 38000; Rest[CoefficientList[Series[Exp[-5 Sum[DivisorSigma[1, j] x^j/j, {j, 1, nmax}]], {x, 0, nmax}], x]], 0]]
    (* 4th program: *)
    sigma[k_] := sigma[k] = DivisorSigma[1, k];
    a[0] = 1; a[n_] := a[n] = -5/n Sum[sigma[k] a[n-k], {k, 1, n}];
    Reap[For[k = 1, k <= 10^5, k++, If[a[k] == 0, Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Dec 20 2018 *)
  • PARI
    x='x+O('x^30000); v=Vec(eta(x)^5 - 1); for(k=1, #v, if(v[k]==0, print1(k, ", "))); \\ Altug Alkan, Mar 31 2018, after Joerg Arndt at A213250

A339704 Dirichlet g.f.: Product_{k>=2} (1 - k^(-s))^5.

Original entry on oeis.org

1, -5, -5, 5, -5, 20, -5, 10, 5, 20, -5, -5, -5, 20, 20, -15, -5, -5, -5, -5, 20, 20, -5, -55, 5, 20, 10, -5, -5, -55, -5, -6, 20, 20, 20, -45, -5, 20, 20, -55, -5, -55, -5, -5, -5, 20, -5, 20, 5, -5, 20, -5, -5, -55, 20, -55, 20, 20, -5, -55, -5, 20, -5, -5, 20, -55, -5, -5, 20, -55
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 13 2020

Keywords

Crossrefs

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A339320(n/d) * a(d).
a(p^k) = A000728(k) for prime p.

A258405 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^5 dx.

Original entry on oeis.org

1, 3, 7, 8, 0, 1, 0, 7, 0, 8, 4, 6, 5, 5, 4, 6, 4, 2, 8, 4, 5, 3, 8, 6, 1, 3, 1, 4, 0, 2, 1, 9, 3, 8, 4, 3, 0, 8, 4, 5, 2, 2, 5, 4, 1, 2, 3, 2, 6, 2, 5, 9, 8, 2, 6, 8, 3, 9, 3, 7, 0, 0, 3, 7, 0, 9, 2, 4, 8, 6, 3, 1, 0, 7, 7, 3, 1, 8, 1, 7, 0, 4, 8, 9, 3, 6, 2, 9, 1, 7, 6, 9, 8, 5, 9, 2, 4, 3, 4, 4, 1, 4
Offset: 0

Views

Author

Vaclav Kotesovec, May 29 2015

Keywords

Examples

			0.137801070846554642845386131402193843084522541232625982683937003709248631...
		

Crossrefs

Programs

  • Maple
    evalf(Sum(Sum(2*Pi*(-1)^(h+m) / cosh(sqrt(7 - 4*h + 12*h^2 - 4*m + 12*m^2)*Pi/2), m=-infinity..infinity), h=-infinity..infinity), 120); # Vaclav Kotesovec, Dec 04 2015
  • Mathematica
    nmax=200; p=1; q5=Table[PrintTemporary[n]; p=Expand[p*(1-x^n)^5]; Total[CoefficientList[p,x]/Range[1,Exponent[p,x]+1]],{n,1,nmax}]; q5n=N[q5,1000]; Table[SequenceLimit[Take[q5n,j]],{j,Length[q5n]-100,Length[q5n],10}]
    nterms = 40; N[Sum[Sum[2*Pi*(-1)^(h+m) / Cosh[Sqrt[7 - 4*h + 12*h^2 - 4*m + 12*m^2]*Pi/2], {m, -nterms, nterms}], {h, -nterms, nterms}], 100] (* Vaclav Kotesovec, Dec 04 2015 *)
    RealDigits[NIntegrate[QPochhammer[x]^5, {x, 0, 1}, WorkingPrecision -> 120], 10, 106][[1]] (* Vaclav Kotesovec, Oct 10 2023 *)

Formula

Sum_{m = -infinity..infinity} (Sum_{h = -infinity..infinity} (2*Pi*(-1)^(h+m) / cosh(sqrt(7 - 4*h + 12*h^2 - 4*m + 12*m^2)*Pi/2))). - Vaclav Kotesovec, Dec 04 2015

A319933 A(n, k) = [x^k] DedekindEta(x)^n, square array read by descending antidiagonals, A(n, k) for n >= 0 and k >= 0.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, -1, -2, 1, 0, 0, -1, -3, 1, 0, 0, 2, 0, -4, 1, 0, 1, 1, 5, 2, -5, 1, 0, 0, 2, 0, 8, 5, -6, 1, 0, 1, -2, 0, -5, 10, 9, -7, 1, 0, 0, 0, -7, -4, -15, 10, 14, -8, 1, 0, 0, -2, 0, -10, -6, -30, 7, 20, -9, 1, 0, 0, -2, 0, 8, -5, 0, -49, 0, 27, -10, 1
Offset: 0

Views

Author

Peter Luschny, Oct 02 2018

Keywords

Comments

The columns are generated by polynomials whose coefficients constitute the triangle of signed D'Arcais numbers A078521 when multiplied with n!.

Examples

			[ 0] 1,   0,   0,    0,     0,    0,     0,     0,     0,     0, ... A000007
[ 1] 1,  -1,  -1,    0,     0,    1,     0,     1,     0,     0, ... A010815
[ 2] 1,  -2,  -1,    2,     1,    2,    -2,     0,    -2,    -2, ... A002107
[ 3] 1,  -3,   0,    5,     0,    0,    -7,     0,     0,     0, ... A010816
[ 4] 1,  -4,   2,    8,    -5,   -4,   -10,     8,     9,     0, ... A000727
[ 5] 1,  -5,   5,   10,   -15,   -6,    -5,    25,    15,   -20, ... A000728
[ 6] 1,  -6,   9,   10,   -30,    0,    11,    42,     0,   -70, ... A000729
[ 7] 1,  -7,  14,    7,   -49,   21,    35,    41,   -49,  -133, ... A000730
[ 8] 1,  -8,  20,    0,   -70,   64,    56,     0,  -125,  -160, ... A000731
[ 9] 1,  -9,  27,  -12,   -90,  135,    54,   -99,  -189,   -85, ... A010817
[10] 1, -10,  35,  -30,  -105,  238,     0,  -260,  -165,   140, ... A010818
    A001489,  v , A167541, v , A319931,  v ,         diagonal: A008705
           A080956       A319930      A319932
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth ed., Clarendon Press, Oxford, 2003.

Crossrefs

Transpose of A286354.
Cf. A078521, A319574 (JacobiTheta3).

Programs

  • Julia
    # DedekindEta is defined in A000594
    for n in 0:10
        DedekindEta(10, n) |> println
    end
  • Maple
    DedekindEta := (x, n) -> mul(1-x^j, j=1..n):
    A319933row := proc(n, len) series(DedekindEta(x, len)^n, x, len+1):
    seq(coeff(%, x, j), j=0..len-1) end:
    seq(print([n], A319933row(n, 10)), n=0..10);
  • Mathematica
    eta[x_, n_] := Product[1 - x^j, {j, 1, n}];
    A[n_, k_] := SeriesCoefficient[eta[x, k]^n, {x, 0, k}];
    Table[A[n - k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 10 2018 *)
  • Sage
    from sage.modular.etaproducts import qexp_eta
    def A319933row(n, len):
        return (qexp_eta(ZZ['q'], len+4)^n).list()[:len]
    for n in (0..10):
        print(A319933row(n, 10))
    
Showing 1-6 of 6 results.