A258415 Array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = (2 + 2^(n-1)*(6*k - 3 + 2*(-1)^n))/3, n,k >= 1.
1, 4, 3, 2, 8, 5, 14, 10, 12, 7, 6, 30, 18, 16, 9, 54, 38, 46, 26, 20, 11, 22, 118, 70, 62, 34, 24, 13, 214, 150, 182, 102, 78, 42, 28, 15, 86, 470, 278, 246, 134, 94, 50, 32, 17, 854, 598, 726, 406, 310, 166, 110, 58, 36, 19
Offset: 1
Examples
Array begins: . 1 3 5 7 9 11 13 15 17 19 . 4 8 12 16 20 24 28 32 36 40 . 2 10 18 26 34 42 50 58 66 74 . 14 30 46 62 78 94 110 126 142 158 . 6 38 70 102 134 166 198 230 262 294 . 54 118 182 246 310 374 438 502 566 630 . 22 150 278 406 534 662 790 918 1046 1174 . 214 470 726 982 1238 1494 1750 2006 2262 2518 . 86 598 1110 1622 2134 2646 3158 3670 4182 4694 . 854 1878 2902 3926 4950 5974 6998 8022 9046 10070
Programs
-
Mathematica
(* Array: *) Grid[Table[(2 + 2^(n - 1)*(6*k - 3 + 2*(-1)^n))/3, {n, 10}, {k, 10}]] (* Array antidiagonals flattened: *) Flatten[Table[(2 + 2^(n - k)*(6*k - 3 + 2*(-1)^(n - k + 1)))/3, {n, 10}, {k, n}]]
Formula
A(n,k) = (1 + A257499(n,k))/2.
Comments