cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258416 Number of partitions of the 2-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.

Original entry on oeis.org

4, 29, 184, 1148, 7228, 46224, 300476, 1983102, 13266032, 89795420, 614058228, 4236652416, 29457698192, 206215486597, 1452248529432, 10281676045348, 73137772914324, 522472109334560, 3746685545297640, 26961148855455180, 194626321451800800, 1409026233004925340
Offset: 2

Views

Author

Alois P. Heinz, May 29 2015

Keywords

Crossrefs

Column k=2 of A255982.

Programs

  • Maple
    b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
           A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
        end:
    A:= proc(n, k) option remember; `if`(n=0, 1,
          -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
        end:
    T:= proc(n, k) option remember;
          add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
        end:
    a:= n-> T(n, 2):
    seq(a(n), n=2..25);
  • Mathematica
    b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n - 1, k], Sum[A[j, k]*b[n - j - 1, k, t - 1], {j, 0, n - 2}]]];
    A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[Binomial[k, j]*(-1)^j*b[n + 1, k, 2^j], {j, 1, k}]];
    T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
    a[n_] := T[n, 2];
    a /@ Range[2, 25] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)

Formula

From Vaclav Kotesovec, May 29 2015: (Start)
Recurrence: 5*(n-2)*(n-1)*n*(n+1)*(13616*n^4 - 138092*n^3 + 514558*n^2 - 835288*n + 498441)*a(n) = - 6*(n-2)*(n-1)*n*(27232*n^5 - 289800*n^4 + 1170888*n^3 - 2195854*n^2 + 1802270*n - 411881)*a(n-1) + 16*(n-2)*(n-1)*(544640*n^6 - 6612960*n^5 + 32102192*n^4 - 79406652*n^3 + 104891690*n^2 - 69498516*n + 17766135)*a(n-2) - 8*(n-2)*(2*n - 5)*(1524992*n^6 - 18516288*n^5 + 89869136*n^4 - 222469596*n^3 + 295082666*n^2 - 197989116*n + 52268391)*a(n-3) - 16*(2*n - 7)*(2*n - 5)*(4*n - 13)*(4*n - 11)*(13616*n^4 - 83628*n^3 + 181978*n^2 - 165984*n + 53235)*a(n-4).
a(n) ~ c * d^n / (sqrt(Pi) * n^(3/2)), where d = 7.721133226857077553917531558... is the root of the equation 256 + 512*d - 32*d^2 - 5*d^3 = 0, c = 1.11097484883257916279675191289... is the root of the equation -8 + 364*c^2 - 518*c^4 + 185*c^6 = 0.
(End)