A258416 Number of partitions of the 2-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.
4, 29, 184, 1148, 7228, 46224, 300476, 1983102, 13266032, 89795420, 614058228, 4236652416, 29457698192, 206215486597, 1452248529432, 10281676045348, 73137772914324, 522472109334560, 3746685545297640, 26961148855455180, 194626321451800800, 1409026233004925340
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..1000
Crossrefs
Column k=2 of A255982.
Programs
-
Maple
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1, A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2))) end: A:= proc(n, k) option remember; `if`(n=0, 1, -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k)) end: T:= proc(n, k) option remember; add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k) end: a:= n-> T(n, 2): seq(a(n), n=2..25);
-
Mathematica
b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n - 1, k], Sum[A[j, k]*b[n - j - 1, k, t - 1], {j, 0, n - 2}]]]; A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[Binomial[k, j]*(-1)^j*b[n + 1, k, 2^j], {j, 1, k}]]; T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]; a[n_] := T[n, 2]; a /@ Range[2, 25] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
Formula
From Vaclav Kotesovec, May 29 2015: (Start)
Recurrence: 5*(n-2)*(n-1)*n*(n+1)*(13616*n^4 - 138092*n^3 + 514558*n^2 - 835288*n + 498441)*a(n) = - 6*(n-2)*(n-1)*n*(27232*n^5 - 289800*n^4 + 1170888*n^3 - 2195854*n^2 + 1802270*n - 411881)*a(n-1) + 16*(n-2)*(n-1)*(544640*n^6 - 6612960*n^5 + 32102192*n^4 - 79406652*n^3 + 104891690*n^2 - 69498516*n + 17766135)*a(n-2) - 8*(n-2)*(2*n - 5)*(1524992*n^6 - 18516288*n^5 + 89869136*n^4 - 222469596*n^3 + 295082666*n^2 - 197989116*n + 52268391)*a(n-3) - 16*(2*n - 7)*(2*n - 5)*(4*n - 13)*(4*n - 11)*(13616*n^4 - 83628*n^3 + 181978*n^2 - 165984*n + 53235)*a(n-4).
a(n) ~ c * d^n / (sqrt(Pi) * n^(3/2)), where d = 7.721133226857077553917531558... is the root of the equation 256 + 512*d - 32*d^2 - 5*d^3 = 0, c = 1.11097484883257916279675191289... is the root of the equation -8 + 364*c^2 - 518*c^4 + 185*c^6 = 0.
(End)