A258419 Number of partitions of the 5-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.
5040, 230400, 6792750, 165293700, 3624918660, 74699100720, 1479942440340, 28577108044800, 542482698531000, 10181610525525360, 189663357076785270, 3515970161266821510, 64985380300281057950, 1199146771516702098500, 22111945264260791498090
Offset: 5
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 5..750
Crossrefs
Column k=5 of A255982.
Programs
-
Maple
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1, A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2))) end: A:= proc(n, k) option remember; `if`(n=0, 1, -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k)) end: T:= proc(n, k) option remember; add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k) end: a:= n-> T(n, 5): seq(a(n), n=5..25);
-
Mathematica
b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n - 1, k], Sum[A[j, k]*b[n - j - 1, k, t - 1], {j, 0, n - 2}]]]; A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[Binomial[k, j]*(-1)^j*b[n + 1, k, 2^j], {j, 1, k}]]; T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]; a[n_] := T[n, 5]; a /@ Range[5, 25] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)