A258420 Number of partitions of the 6-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.
95040, 6308280, 259518600, 8563232700, 249224561040, 6703099068120, 171052924578480, 4209175565848800, 100941470303368480, 2376150752752629210, 55182874193888254800, 1268931845185709426820, 28968880808493233206500, 657875495503038733415880
Offset: 6
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 6..700
Crossrefs
Column k=6 of A255982.
Programs
-
Maple
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1, A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2))) end: A:= proc(n, k) option remember; `if`(n=0, 1, -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k)) end: T:= proc(n, k) option remember; add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k) end: a:= n-> T(n, 6): seq(a(n), n=6..25);