A258422 Number of partitions of the 8-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.
57657600, 6895848960, 485566099200, 26364414061440, 1224007231940640, 51216101151626880, 1991943704397427200, 73440737647137519120, 2601107886874207253760, 89332305977055996111040, 2995343867463073686769440, 98555316817167057069129600
Offset: 8
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 8..650
Crossrefs
Column k=8 of A255982.
Programs
-
Maple
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1, A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2))) end: A:= proc(n, k) option remember; `if`(n=0, 1, -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k)) end: T:= proc(n, k) option remember; add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k) end: a:= n-> T(n, 8): seq(a(n), n=8..25);