A258423 Number of partitions of the 9-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.
1764322560, 268497815040, 23638153069440, 1582270134681600, 89523597871058400, 4521537191138385600, 210558053896067770200, 9231136974969952417200, 386479930120038746283600, 15609810973119409265234400, 612788961533595085909010880, 23513250306172521375772885440
Offset: 9
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 9..650
Crossrefs
Column k=9 of A255982.
Programs
-
Maple
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1, A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2))) end: A:= proc(n, k) option remember; `if`(n=0, 1, -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k)) end: T:= proc(n, k) option remember; add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k) end: a:= n-> T(n, 9): seq(a(n), n=9..25);