A258424 Number of partitions of the 10-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.
60949324800, 11504185056000, 1238502000960000, 100203614366688000, 6786584967157027200, 406962991813415247000, 22343812436173975084800, 1147985274106305649476000, 56030531363859577353444000, 2626132408521540739815456000, 119149819949135773678717267200
Offset: 10
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 10..600
Crossrefs
Column k=10 of A255982.
Programs
-
Maple
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1, A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2))) end: A:= proc(n, k) option remember; `if`(n=0, 1, -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k)) end: T:= proc(n, k) option remember; add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k) end: a:= n-> T(n, 10): seq(a(n), n=10..25);