cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258426 Number of partitions of the n-dimensional hypercube resulting from a sequence of 2n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.

Original entry on oeis.org

1, 2, 184, 64464, 51622600, 74699100720, 171052924578480, 569565504689176800, 2601107886874207253760, 15609810973119409265234400, 119149819949135773678717267200, 1127426871984268618976053945104000, 12953029027945569352833762868999449600
Offset: 0

Views

Author

Alois P. Heinz, May 29 2015

Keywords

Examples

			a(1) = 2 : [||-],  [-||].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
           A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
        end:
    A:= proc(n, k) option remember; `if`(n=0, 1,
          -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
        end:
    T:= proc(n, k) option remember;
          add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
        end:
    a:= n-> T(2*n,n):
    seq(a(n), n=0..15);
  • Mathematica
    b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n - 1, k], Sum[A[j, k]*b[n - j - 1, k, t - 1], {j, 0, n - 2}]]]; A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[Binomial[k, j]*(-1)^j*b[n + 1, k, 2^j], {j, 1, k}]]; T[n_, k_] := T[n, k] = Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]; a[n_] := T[2*n, n]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Dec 18 2016, after Alois P. Heinz *)

Formula

a(n) = A255982(2n,n).
a(n) ~ c * d^n * n!^2 / n^(5/2), where d = A256254 = 98.8248737517356857317..., c = 2^(3/8) * (-LambertW(-2*exp(-2)))^(1/8) / (8 * Pi^(3/2) * sqrt(1 + LambertW(-2*exp(-2)))) = 0.033762267258894908009578351704834892... . - Vaclav Kotesovec, May 31 2015, updated Sep 27 2023