cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258427 Number T(n,k) of redundant binary trees with n inner nodes of exactly k different dimensions used for the partition of the k-dimensional hypercube by hierarchical bisection; triangle T(n,k), n>=3, 2<=k<=n-1, read by rows.

Original entry on oeis.org

1, 12, 18, 112, 420, 336, 956, 6816, 12936, 7200, 7830, 95579, 324540, 414450, 178200, 62744, 1244466, 6755720, 14886300, 14355000, 5045040, 496518, 15537456, 127063596, 430572780, 699460740, 542341800, 161441280
Offset: 3

Views

Author

Alois P. Heinz, May 29 2015

Keywords

Comments

T(n,k) is defined for all n>=0 and k>=0. The triangle displays only positive terms. T(n,k) = 0 for k in {0, 1} or k>=n.

Examples

			T(3,2) = 1. There are A256061(3,2) = 30 binary trees with 3 inner nodes of exactly 2 different dimensions, 28 of them have unique hypercube partitions, 2 of them have the same partition:
:              :                     : partition :
|--------------|---------------------|-----------|
|              |    (1)       [2]    |           |
|              |    / \       / \    |   .___.   |
|       trees: |  [2] [2]   (1) (1)  |   |_|_|   |
|              |  / \ / \   / \ / \  |   |_|_|   |
|    balanced  |                     |           |
| parentheses: |  ([])[]    [()]()   |           |
|--------------|---------------------|-----------|
Triangle T(n,k) begins:
.
. .
. .     .
. .     1,       .
. .    12,      18,       .
. .   112,     420,     336,        .
. .   956,    6816,   12936,     7200,        .
. .  7830,   95579,  324540,   414450,   178200,       .
. . 62744, 1244466, 6755720, 14886300, 14355000, 5045040,   .
		

Crossrefs

Programs

  • Maple
    A:= proc(n, k) option remember; k^n*binomial(2*n, n)/(n+1) end:
    B:= proc(n, k) option remember;
           add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
        end:
    b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
           H(n-1, k), add(H(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
        end:
    H:= proc(n, k) option remember; `if`(n=0, 1,
          -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
        end:
    G:= proc(n, k) option remember;
           add(H(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
        end:
    T:= (n, k)-> B(n, k)-G(n, k):
    seq(seq(T(n, k), k=2..n-1), n=3..12);
  • Mathematica
    A[n_, k_] := A[n, k] = k^n*Binomial[2*n, n]/(n+1); B[n_, k_] := B[n, k] = Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; b[n_, k_, t_] := b[n, k, t] = If[t==0, 1, If[t==1, H[n-1, k], Sum[H[j, k]*b[n-j-1, k, t-1], {j, 0, n-2}]]]; H[n_, k_] := H[n, k] = If[n==0, 1, -Sum[Binomial[k, j]* (-1)^j* b[n+1, k, 2^j], {j, 1, k}]]; G[n_, k_] := G[n, k] = Sum[H[n, k-i]*(-1)^i* Binomial[k, i], {i, 0, k}]; T[n_, k_] := T[n, k] = B[n, k]-G[n, k]; Table[Table[T[n, k], {k, 2, n-1}], {n, 3, 12}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)

Formula

T(n,k) = A256061(n,k) - A255982(n,k).