cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258438 Sum_{i=1..n} Sum_{j=1..n} (i OR j), where OR is the binary logical OR operator.

Original entry on oeis.org

0, 1, 9, 24, 64, 117, 189, 280, 456, 657, 889, 1152, 1464, 1813, 2205, 2640, 3376, 4161, 5001, 5896, 6864, 7893, 8989, 10152, 11448, 12817, 14265, 15792, 17416, 19125, 20925, 22816, 25824, 28929, 32137, 35448, 38880, 42421, 46077, 49848, 53800
Offset: 0

Views

Author

Enrique Pérez Herrero, May 30 2015

Keywords

Crossrefs

Cf. A224924.

Programs

  • Maple
    A[0]:= 0:
    for n from 1 to 100 do
      A[n]:= A[n-1] + n + 2*add(Bits[Or](i,n),i=1..n-1)
    od:
    seq(A[i],i=0..100); # Robert Israel, Jun 11 2015
  • Mathematica
    a[n_] := Sum[BitOr[i, j], {i, 1, n}, {j, 1, n}]; Table[a[n], {n, 0, 40}]
  • PARI
    a(n) = sum(i=1, n, sum(j=1, n, bitor(i, j))); \\ Michel Marcus, May 31 2015

Formula

a(2^k) = (3*8^k+5*4^k)/4-2^k. - Giovanni Resta, May 30 2015
a(2^k-1) = 2^(k-2) * (4 - 7*2^k + 3*4^k). - Enrique Pérez Herrero, Jun 10 2015
a(n) = n^3 + n^2 - A224924(n). - Robert Israel, Jun 11 2015