cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258450 Number of collections of nonempty multisets of colored objects, where n is the number of objects plus the number of distinct colors.

Original entry on oeis.org

1, 0, 1, 2, 5, 13, 35, 100, 298, 926, 2995, 10045, 34871, 125040, 462283, 1759340, 6882479, 27639252, 113809750, 479993898, 2071411798, 9138568984, 41182104446, 189418562699, 888607018626, 4248949407337, 20695172225549, 102617378820155, 517728263280060
Offset: 0

Views

Author

Alois P. Heinz, May 30 2015

Keywords

Examples

			a(4) = 5: {{1},{1},{1}}, {{1},{1,1}}, {{1,1,1}}, {{1},{2}}, {{1,2}}.
		

Crossrefs

Antidiagonal sums of A255903.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n=0, 1, add(A(n-j, k)*
          add(d*binomial(d+k-1, k-1), d=divisors(j)), j=1..n)/n)
        end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
    a:= n-> add(T(n-i, i), i=0..n/2):
    seq(a(n), n=0..30);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1, Sum[A[n-j, k]*DivisorSum[j, #*Binomial[# +k-1, k-1]&], {j, 1, n}]/n];
    T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}];
    a[n_] := Sum[T[n-i, i], {i, 0, n/2}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 24 2017, translated from Maple *)

Formula

a(n) = Sum_{i=0..floor(n/2)} A255903(n-i,i).