A258450 Number of collections of nonempty multisets of colored objects, where n is the number of objects plus the number of distinct colors.
1, 0, 1, 2, 5, 13, 35, 100, 298, 926, 2995, 10045, 34871, 125040, 462283, 1759340, 6882479, 27639252, 113809750, 479993898, 2071411798, 9138568984, 41182104446, 189418562699, 888607018626, 4248949407337, 20695172225549, 102617378820155, 517728263280060
Offset: 0
Keywords
Examples
a(4) = 5: {{1},{1},{1}}, {{1},{1,1}}, {{1,1,1}}, {{1},{2}}, {{1,2}}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
Antidiagonal sums of A255903.
Programs
-
Maple
with(numtheory): A:= proc(n, k) option remember; `if`(n=0, 1, add(A(n-j, k)* add(d*binomial(d+k-1, k-1), d=divisors(j)), j=1..n)/n) end: T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k): a:= n-> add(T(n-i, i), i=0..n/2): seq(a(n), n=0..30);
-
Mathematica
A[n_, k_] := A[n, k] = If[n==0, 1, Sum[A[n-j, k]*DivisorSum[j, #*Binomial[# +k-1, k-1]&], {j, 1, n}]/n]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; a[n_] := Sum[T[n-i, i], {i, 0, n/2}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 24 2017, translated from Maple *)
Formula
a(n) = Sum_{i=0..floor(n/2)} A255903(n-i,i).