cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258453 G.f.: Sum_{k>0} x^((k^2 + k)/2) / (1 + x^k).

Original entry on oeis.org

1, -1, 2, -1, 0, 0, 2, -1, -1, 0, 2, 0, 0, -2, 2, -1, 0, 1, 2, -2, 0, -2, 2, 0, 1, 0, 0, 0, 0, -2, 2, -1, 0, 0, 2, 1, 0, -2, 0, -2, 0, 2, 2, -2, 2, -2, 2, 0, -1, -1, 0, 0, 0, -2, 4, 0, 0, 0, 2, -2, 0, -2, 0, -1, 0, 2, 2, 0, 0, -2, 2, -1, 0, 0, 2, -2, -2, 0, 2
Offset: 1

Views

Author

Michael Somos, Nov 05 2015

Keywords

Examples

			G.f. = x - x^2 + 2*x^3 - x^4 + 2*x^7 - x^8 - x^9 + 2*x^11 - 2*x^14 + 2*x^15 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^((k^2 + k)/2) / (1 + x^k), {k, Sqrt[8 n + 1]}], {x, 0, n}]];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=1, sqrtint(8*n + 1), x^((k^2 + k)/2) / (1 + x^k), x * O(x^n)), n))};