A258457 Number of partitions of n into parts of exactly 2 sorts which are introduced in ascending order.
1, 4, 12, 30, 72, 160, 351, 743, 1561, 3219, 6616, 13456, 27312, 55139, 111166, 223472, 448902, 900305, 1804838, 3615137, 7239325, 14490368, 29000050, 58025059, 116090823, 232234573, 464554483, 929220024, 1858618215, 3717468189, 7435305664, 14871092926
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..1000
Crossrefs
Column k=2 of A256130.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))) end: T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k): a:= n-> T(n,2): seq(a(n), n=2..35);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k*b[n - i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i/(i!*(k - i)!), {i, 0, k}]; a[n_] := T[n, 2]; a /@ Range[2, 35] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
Formula
a(n) ~ c * 2^n, where c = 1/Product_{n>=2} (1-1/2^n) = 1/(2*A048651) = 1.7313733097275318... . - Vaclav Kotesovec, Jun 01 2015