cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258459 Number of partitions of n into parts of exactly 4 sorts which are introduced in ascending order.

Original entry on oeis.org

1, 11, 77, 438, 2216, 10422, 46731, 202814, 860586, 3593561, 14834956, 60735095, 247155292, 1001318246, 4043482110, 16288762319, 65500024027, 263035832734, 1055252430510, 4230340216034, 16949359882259, 67881449170593, 271777855641517, 1087867649157513
Offset: 4

Views

Author

Alois P. Heinz, May 30 2015

Keywords

Crossrefs

Column k=4 of A256130.
Cf. A320546.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
        end:
    T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
    a:= n-> T(n,4):
    seq(a(n), n=4..35);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k*b[n - i, i, k]]]];
    T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i/(i!*(k - i)!), {i, 0, k}];
    Table[T[n, 4], {n, 4, 35}] (* Jean-François Alcover, May 25 2018, translated from Maple *)

Formula

a(n) ~ c * 4^n, where c = 1/(24*Product_{n>=1} (1-1/4^n)) = 1/(24*QPochhammer[1/4, 1/4]) = 1/(24*A100221) = 0.060514735102066542326446... . - Vaclav Kotesovec, Jun 01 2015