cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258464 Number of partitions of n into parts of exactly 9 sorts which are introduced in ascending order.

Original entry on oeis.org

1, 46, 1202, 23523, 384227, 5542879, 73055550, 899381476, 10501235760, 117575627562, 1272685923724, 13401470756233, 137945728220761, 1393299928219604, 13851195993228228, 135865787060383171, 1317624915100561406, 12654868264707446322, 120534359759023523561
Offset: 9

Views

Author

Alois P. Heinz, May 30 2015

Keywords

Crossrefs

Column k=9 of A256130.
Cf. A320551.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
        end:
    T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
    a:= n-> T(n,9):
    seq(a(n), n=9..30);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k b[n - i, i, k]]]];
    T[n_, k_] := Sum[b[n, n, k - i] (-1)^i/(i! (k - i)!), {i, 0, k}];
    Table[T[n, 9], {n, 9, 30}] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * 9^n, where c = 1/(9!*Product_{n>=1} (1-1/9^n)) = 1/(9!*QPochhammer[1/9, 1/9]) = 0.0000031438016899923866898607402658778352... . - Vaclav Kotesovec, Jun 01 2015