A258465 Number of partitions of n into parts of exactly 10 sorts which are introduced in ascending order.
1, 56, 1762, 41143, 795657, 13499449, 208050040, 2979881876, 40300054520, 520576172762, 6478447651345, 78185947269684, 919805200917658, 10591351937396242, 119764715367192468, 1333512940732309728, 14652754322423701707, 159182411488944508232
Offset: 10
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 10..1000
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))) end: T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k): a:= n-> T(n,10): seq(a(n), n=10..30);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k b[n - i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k - i] (-1)^i/(i! (k - i)!), {i, 0, k}]; Table[T[n, 10], {n, 10, 30}] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
Formula
a(n) ~ c * 10^n, where c = 1/(10!*Product_{n>=1} (1-1/10^n)) = 1/(10!*QPochhammer[1/10, 1/10]) = 0.0000003096292864992979803727261336621564... . - Vaclav Kotesovec, Jun 01 2015
Comments