A258468 a(n) = lcm(n, n - tau(n)).
0, 0, 3, 4, 15, 6, 35, 8, 18, 30, 99, 12, 143, 70, 165, 176, 255, 36, 323, 140, 357, 198, 483, 48, 550, 286, 621, 308, 783, 330, 899, 416, 957, 510, 1085, 108, 1295, 646, 1365, 160, 1599, 714, 1763, 836, 585, 966, 2115, 912, 2254, 1100, 2397, 1196
Offset: 1
Examples
a(5) = 15, since tau(5) = 2, lcm(5, 3) = 15. a(7) = 35, since tau(7) = 2, lcm(7, 5) = 35. a(10) = 30, since tau(10) = 4, lcm (10, 6) = 30.
Links
- Joshua Zelinsky, Tau Numbers: A Partial Proof of a Conjecture and Other Results, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.8.
Programs
-
Mathematica
Table[LCM[n, n - DivisorSigma[0, n]], {n, 200}]
-
PARI
vector(100, n, lcm(n, n-numdiv(n))) \\ Michel Marcus, May 31 2015
Formula
a(n) = lcm(n, n - tau(n)).
a(n) = n * (n - 2) = A005563(n-2) if n is prime.
Extensions
Edited by Wolfdieter Lang, Jun 16 2015
Comments