A258472 Number of partitions of n into two sorts of parts having exactly 2 parts of the second sort.
1, 4, 11, 24, 49, 89, 158, 262, 428, 667, 1033, 1542, 2289, 3313, 4765, 6717, 9427, 13011, 17882, 24260, 32763, 43775, 58268, 76837, 100953, 131629, 171003, 220683, 283877, 363016, 462794, 587005, 742332, 934536, 1173293, 1467022, 1829538, 2273365, 2817858
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..10000
- Cristina Ballantine, George Beck, Mircea Merca, and Bruce Sagan, Elementary symmetric partitions, arXiv:2409.11268 [math.CO], 2024. See p. 20.
Programs
-
Maple
b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*add(x^t* binomial(j, t), t=0..min(2, j)), j=0..n/i))), x, 3) end: a:= n-> coeff(b(n$2), x, 2): seq(a(n), n=2..40);
-
Mathematica
((Log[1 - x]^2 - Log[1 - x] Log[x] + QPolyGamma[1, x] (2 Log[1 - x] - Log[x] + QPolyGamma[1, x]) + QPolyGamma[1, 1, x])/(2 QPochhammer[x] Log[x]^2) + O[x]^45)[[3]] // Simplify (* Vladimir Reshetnikov, Nov 21 2016 *) Table[SeriesCoefficient[1/QPochhammer[q + x, q], {x, 0, 2}, {q, 0, n}], {n, 0, 40}] // Simplify (* Vladimir Reshetnikov, Nov 22 2016 *)
Formula
a(n) = A094533(n)/2. - Vladimir Reshetnikov, Nov 21 2016