cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258472 Number of partitions of n into two sorts of parts having exactly 2 parts of the second sort.

Original entry on oeis.org

1, 4, 11, 24, 49, 89, 158, 262, 428, 667, 1033, 1542, 2289, 3313, 4765, 6717, 9427, 13011, 17882, 24260, 32763, 43775, 58268, 76837, 100953, 131629, 171003, 220683, 283877, 363016, 462794, 587005, 742332, 934536, 1173293, 1467022, 1829538, 2273365, 2817858
Offset: 2

Views

Author

Alois P. Heinz, May 31 2015

Keywords

Crossrefs

Column k=2 of A256193.
Cf. A094533.

Programs

  • Maple
    b:= proc(n, i) option remember; series(`if`(n=0, 1,
          `if`(i<1, 0, add(b(n-i*j, i-1)*add(x^t*
           binomial(j, t), t=0..min(2, j)), j=0..n/i))), x, 3)
        end:
    a:= n-> coeff(b(n$2), x, 2):
    seq(a(n), n=2..40);
  • Mathematica
    ((Log[1 - x]^2 - Log[1 - x] Log[x] + QPolyGamma[1, x] (2 Log[1 - x] - Log[x] + QPolyGamma[1, x]) + QPolyGamma[1, 1, x])/(2 QPochhammer[x] Log[x]^2) + O[x]^45)[[3]] // Simplify (* Vladimir Reshetnikov, Nov 21 2016 *)
    Table[SeriesCoefficient[1/QPochhammer[q + x, q], {x, 0, 2}, {q, 0, n}], {n, 0, 40}] // Simplify (* Vladimir Reshetnikov, Nov 22 2016 *)

Formula

a(n) = A094533(n)/2. - Vladimir Reshetnikov, Nov 21 2016