A258473 Number of partitions of n into two sorts of parts having exactly 3 parts of the second sort.
1, 5, 16, 41, 91, 186, 351, 635, 1090, 1824, 2939, 4652, 7162, 10875, 16159, 23758, 34321, 49145, 69389, 97213, 134608, 185172, 252182, 341443, 458413, 612186, 811567, 1070826, 1403784, 1832370, 2378320, 3074642, 3954869, 5068684, 6466697, 8222640, 10412903
Offset: 3
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..1000
Crossrefs
Column k=3 of A256193.
Programs
-
Maple
b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*add(x^t* binomial(j, t), t=0..min(3, j)), j=0..n/i))), x, 4) end: a:= n-> coeff(b(n$2), x, 3): seq(a(n), n=3..40);
-
Mathematica
b[n_, i_] := b[n, i] = Series[If[n==0, 1, If[i<1, 0, Sum[b[n-i*j, i-1]*Sum[ x^t*Binomial[j, t], {t, 0, Min[3, j]}], {j, 0, n/i}]]], {x, 0, 4}]; a[n_] := Coefficient[b[n, n], x, 3]; a /@ Range[3, 40] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)