cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258474 Number of partitions of n into two sorts of parts having exactly 4 parts of the second sort.

Original entry on oeis.org

1, 6, 22, 63, 155, 342, 700, 1343, 2463, 4323, 7361, 12139, 19581, 30819, 47697, 72388, 108390, 159752, 232833, 334917, 477270, 672589, 940222, 1301954, 1790117, 2441168, 3308341, 4451294, 5955870, 7918574, 10475192, 13779096, 18042899, 23506156, 30496836
Offset: 4

Views

Author

Alois P. Heinz, May 31 2015

Keywords

Crossrefs

Column k=4 of A256193.

Programs

  • Maple
    b:= proc(n, i) option remember; series(`if`(n=0, 1,
          `if`(i<1, 0, add(b(n-i*j, i-1)*add(x^t*
           binomial(j, t), t=0..min(4, j)), j=0..n/i))), x, 5)
        end:
    a:= n-> coeff(b(n$2), x, 4):
    seq(a(n), n=4..40);
  • Mathematica
    b[n_, i_] := b[n, i] = Series[If[n==0, 1, If[i<1, 0, Sum[b[n-i*j, i-1]*Sum[ x^t*Binomial[j, t], {t, 0, Min[4, j]}], {j, 0, n/i}]]], {x, 0, 5}];
    a[n_] := Coefficient[b[n, n], x, 4];
    a /@ Range[4, 40] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)