A258490 Number of words of length 2n such that all letters of the ternary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting doublets into the initially empty word.
5, 56, 465, 3509, 25571, 184232, 1325609, 9567545, 69387483, 505915981, 3708195075, 27314663271, 202116910415, 1501769001416, 11200258810265, 83815491037841, 629152465444715, 4735907436066401, 35740538971518155, 270356740041089471, 2049510329494271615
Offset: 3
Keywords
Examples
a(3) = 5: aabbcc, aabccb, abbacc, abbcca, abccba.
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..1000
Crossrefs
Column k=3 of A256117.
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, k/n* add(binomial(2*n, j)*(n-j)*(k-1)^j, j=0..n-1)) end: T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k): a:= n-> T(n, 3): seq(a(n), n=3..25);
-
Mathematica
A[n_, k_] := A[n, k] = If[n == 0, 1, k/n*Sum[Binomial[2*n, j]*(n - j)*If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]]; T[n_, k_] := Sum[(-1)^i*A[n, k - i]/(i!*(k - i)!), {i, 0, k}]; a[n_] := T[n, 3]; Table[a[n], {n, 3, 25}] (* Jean-François Alcover, May 18 2018, translated from Maple *)
Formula
a(n) ~ 8^n / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 01 2015
Conjecture: 4*n*(n-1)*(46829*n-161203)*a(n) -(n-1)*(4865671*n^2-22433759*n+19821114)*a(n-1) +6*(7756949*n^3-53792553*n^2+117956226*n-84118712)*a(n-2) +(-200071007*n^3+1677158106*n^2-4623144589*n+4201946850)*a(n-3) +2*(2*n-7)*(93171685*n^2-585009841*n+881711802)*a(n-4) -72*(2*n-7)*(2*n-9)*(744719*n-1901876)*a(n-5)=0. - R. J. Mathar, Aug 07 2015