cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258491 Number of words of length 2n such that all letters of the quaternary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting doublets into the initially empty word.

Original entry on oeis.org

14, 300, 4400, 55692, 657370, 7488228, 83752760, 928406556, 10254052556, 113186465340, 1250820198264, 13852280754980, 153813849202674, 1712835575525140, 19129590267619304, 214261857777632700, 2406509409480345364, 27100348605141932540, 305944173898725745944
Offset: 4

Views

Author

Alois P. Heinz, May 31 2015

Keywords

Crossrefs

Column k=4 of A256117.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, k/n*
          add(binomial(2*n, j)*(n-j)*(k-1)^j, j=0..n-1))
        end:
    T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k):
    a:= n-> T(n, 4):
    seq(a(n), n=4..25);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, (k/n) Sum[Binomial[2n, j] (n - j)* If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]];
    T[n_, k_] := Sum[(-1)^i A[n, k - i]/(i! (k - i)!), {i, 0, k}];
    a[n_] := T[n, 4];
    a /@ Range[4, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)

Formula

a(n) ~ 12^n / (8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 01 2015