A258491 Number of words of length 2n such that all letters of the quaternary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting doublets into the initially empty word.
14, 300, 4400, 55692, 657370, 7488228, 83752760, 928406556, 10254052556, 113186465340, 1250820198264, 13852280754980, 153813849202674, 1712835575525140, 19129590267619304, 214261857777632700, 2406509409480345364, 27100348605141932540, 305944173898725745944
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..900
Crossrefs
Column k=4 of A256117.
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, k/n* add(binomial(2*n, j)*(n-j)*(k-1)^j, j=0..n-1)) end: T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k): a:= n-> T(n, 4): seq(a(n), n=4..25);
-
Mathematica
A[n_, k_] := A[n, k] = If[n == 0, 1, (k/n) Sum[Binomial[2n, j] (n - j)* If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]]; T[n_, k_] := Sum[(-1)^i A[n, k - i]/(i! (k - i)!), {i, 0, k}]; a[n_] := T[n, 4]; a /@ Range[4, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)
Formula
a(n) ~ 12^n / (8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 01 2015