A258492 Number of words of length 2n such that all letters of the quinary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting doublets into the initially empty word.
42, 1485, 34034, 647920, 11187462, 182587701, 2880017910, 44477796451, 677940669900, 10250875770135, 154278143783022, 2316262521915440, 34742240691197182, 521131993897607925, 7822497290908844702, 117554364707534272375, 1769075045150700563052
Offset: 5
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 5..800
Crossrefs
Column k=5 of A256117.
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, k/n* add(binomial(2*n, j)*(n-j)*(k-1)^j, j=0..n-1)) end: T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k): a:= n-> T(n, 5): seq(a(n), n=5..25);
-
Mathematica
A[n_, k_] := A[n, k] = If[n == 0, 1, (k/n) Sum[Binomial[2n, j] (n - j)*If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]]; T[n_, k_] := Sum[(-1)^i A[n, k - i]/(i! (k - i)!), {i, 0, k}]; a[n_] := T[n, 5]; a /@ Range[5, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)
Formula
a(n) ~ 16^n / (54*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 01 2015