A258493 Number of words of length 2n such that all letters of the senary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting doublets into the initially empty word.
132, 7007, 231868, 6191808, 146698848, 3229298919, 67773956250, 1377513928505, 27389291758920, 536341475466069, 10391807506431956, 199869644353809760, 3824918464184384952, 72954292150964887751, 1388571904028052188458, 26397789023379585277557
Offset: 6
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 6..750
Crossrefs
Column k=6 of A256117.
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, k/n* add(binomial(2*n, j)*(n-j)*(k-1)^j, j=0..n-1)) end: T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k): a:= n-> T(n, 6): seq(a(n), n=6..25);
Formula
a(n) ~ 20^n / (384*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 01 2015