A258495 Number of words of length 2n such that all letters of the octonary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting doublets into the initially empty word.
1430, 143208, 8488440, 389948856, 15390120042, 549818906780, 18329867191350, 581350326663600, 17769492060922914, 528200606751594392, 15368894406877386408, 439845149792754810984, 12426477142114470011642, 347532158068343623121916, 9642227504194296532321086
Offset: 8
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 8..650
Crossrefs
Column k=8 of A256117.
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, k/n* add(binomial(2*n, j)*(n-j)*(k-1)^j, j=0..n-1)) end: T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k): a:= n-> T(n, 8): seq(a(n), n=8..25);
Formula
a(n) ~ 28^n / (25920*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 01 2015