A258497 Number of words of length 2n such that all letters of the denary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting doublets into the initially empty word.
16796, 2735810, 255290156, 17977098425, 1063758951255, 55927419074670, 2700837720153300, 122411464503168984, 5284666028132079380, 219622926821644989478, 8855064908059488718600, 348436223706779520860457, 13441577595226619289460295, 510180504585665885463323546
Offset: 10
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 10..650
Crossrefs
Column k=10 of A256117.
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, k/n* add(binomial(2*n, j)*(n-j)*(k-1)^j, j=0..n-1)) end: T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k): a:= n-> T(n, 10): seq(a(n), n=10..25);
Formula
a(n) ~ 36^n / (2580480*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 01 2015
Comments