A258499 Number of words of length 4n such that all letters of the n-ary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting doublets into the initially empty word.
1, 1, 34, 3509, 657370, 182587701, 67773956250, 31600247019120, 17769492060922914, 11710509049983422030, 8855064908059488718600, 7558849413204728468703991, 7190781941414575290014093320, 7544364858457252265315311530675, 8654711454787575656983217747533920
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
Crossrefs
Cf. A256117.
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, k/n* add(binomial(2*n, j)*(n-j)*(k-1)^j, j=0..n-1)) end: T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k): a:= n-> T(2*n, n): seq(a(n), n=0..20);
-
Mathematica
A[n_, k_] := A[n, k] = If[n==0, 1, (k/n) Sum[Binomial[2n, j] (n-j) If[j==0, 1, (k-1)^j], {j, 0, n-1}]]; T[n_, k_] := Sum[(-1)^i A[n, k-i]/(i! (k-i)!), {i, 0, k}]; a[n_] := T[2n, n]; a /@ Range[0, 20] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)
Formula
a(n) = A256117(2n,n).
a(n) ~ c * d^n * n! / n^(5/2), where d = A256254 = 98.82487375173568573170688..., c = -sqrt(2) * LambertW(-2*exp(-2)) / (16 * Pi^(3/2) * sqrt(1 + LambertW(-2*exp(-2)))) = 0.008372249434869139279228556376854454452398... . - Vaclav Kotesovec, Jun 01 2015, updated Sep 27 2023