cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A258500 Decimal expansion of the nontrivial real solution of x^(3/2) = (3/2)^x.

Original entry on oeis.org

7, 4, 0, 8, 7, 6, 4, 6, 8, 6, 9, 6, 5, 7, 7, 4, 5, 2, 1, 9, 5, 7, 2, 9, 5, 0, 2, 8, 5, 1, 0, 6, 1, 4, 3, 8, 9, 8, 0, 4, 1, 7, 1, 1, 4, 1, 0, 7, 4, 0, 0, 0, 1, 5, 1, 8, 2, 2, 7, 1, 8, 3, 9, 3, 7, 9, 1, 7, 0, 7, 1, 7, 1, 0, 0, 1, 3, 8, 4, 0, 2, 2, 8, 4, 2, 1, 8, 2, 3, 1, 1, 9, 2, 3, 0, 4, 7, 0, 6, 6, 7
Offset: 1

Views

Author

Jean-François Alcover, Jun 01 2015

Keywords

Examples

			x0 = 7.408764686965774521957295028510614389804171141074...
z = x0^(3/2) = 20.16595073003535058942970947434890012034363496 ...
z > e^e = 15.15426224... = A073226.
		

Crossrefs

Cf. A073226, A194556, A194557, A258501 (x^(5/2)=(5/2)^x), A258502 (x^(7/2)=(7/2)^x).

Programs

  • Mathematica
    x0 = -((x*ProductLog[-1, -(Log[x]/x)])/Log[x]) /. x -> 3/2; RealDigits[x0, 10, 101] // First
    RealDigits[x/.FindRoot[x^(3/2)==(3/2)^x,{x,7},WorkingPrecision->120],10,120][[1]] (* Harvey P. Dale, Dec 07 2024 *)

Formula

x0 = -((x*ProductLog(-1, -(log(x)/x)))/log(x)), with x = 3/2, where ProductLog is the Lambert W function.

A258502 Decimal expansion of the nontrivial real solution of x^(7/2) = (7/2)^x.

Original entry on oeis.org

2, 1, 8, 9, 6, 9, 7, 5, 5, 1, 1, 7, 5, 6, 1, 3, 5, 0, 4, 8, 0, 8, 3, 1, 6, 8, 1, 4, 4, 5, 7, 3, 1, 3, 0, 5, 4, 9, 5, 2, 0, 3, 1, 9, 8, 3, 6, 5, 1, 0, 3, 9, 7, 9, 3, 0, 0, 8, 6, 4, 3, 0, 2, 6, 4, 2, 3, 7, 7, 0, 7, 6, 7, 9, 4, 7, 7, 2, 6, 4, 7, 7, 6, 5, 1, 2, 9, 6, 4, 1, 4, 3, 9, 6, 7, 8, 9, 3, 9, 5, 2, 5
Offset: 1

Views

Author

Jean-François Alcover, Jun 01 2015

Keywords

Examples

			x0 = 2.189697551175613504808316814457313054952031983651039793...
z = x0^(7/2) = 15.53618787439250843837688346448101455506861788472622...
z > e^e = 15.15426224... = A073226.
		

Crossrefs

Cf. A073226, A194556, A194557, A258500 (x^(3/2)=(3/2)^x), A258501 (x^(5/2)=(5/2)^x).

Programs

  • Mathematica
    x0 = -((x*ProductLog[-(Log[x]/x)])/Log[x]) /. x -> 7/2; RealDigits[x0, 10, 101] // First
    RealDigits[x/.FindRoot[x^(7/2)==(7/2)^x,{x,2},WorkingPrecision-> 120]][[1]] (* Harvey P. Dale, Apr 19 2019 *)

Formula

x0 = -((x*ProductLog(-(log(x)/x)))/log(x)), with x = 7/2, where ProductLog is the Lambert W function.
Showing 1-2 of 2 results.