A258566 Triangle in which n-th row contains all possible products of n-1 of the first n primes in descending order.
1, 3, 2, 15, 10, 6, 105, 70, 42, 30, 1155, 770, 462, 330, 210, 15015, 10010, 6006, 4290, 2730, 2310, 255255, 170170, 102102, 72930, 46410, 39270, 30030, 4849845, 3233230, 1939938, 1385670, 881790, 746130, 570570, 510510
Offset: 1
Examples
Triangle begins: 1; 3, 2; 15, 10, 6; 105, 70, 42, 30; 1155, 770, 462, 330, 210; 15015, 10010, 6006, 4290, 2730, 2310; ...
Crossrefs
Programs
-
Maple
T:= n-> (m-> seq(m/ithprime(j), j=1..n))(mul(ithprime(i), i=1..n)): seq(T(n), n=1..10); # Alois P. Heinz, Jun 18 2015
-
Mathematica
T[1, 1] = 1; T[n_, n_] := T[n, n] = Prime[n-1]*T[n-1, n-1]; T[n_, k_] := T[n, k] = Prime[n]*T[n-1, k]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 26 2016 *)
Comments