cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258566 Triangle in which n-th row contains all possible products of n-1 of the first n primes in descending order.

Original entry on oeis.org

1, 3, 2, 15, 10, 6, 105, 70, 42, 30, 1155, 770, 462, 330, 210, 15015, 10010, 6006, 4290, 2730, 2310, 255255, 170170, 102102, 72930, 46410, 39270, 30030, 4849845, 3233230, 1939938, 1385670, 881790, 746130, 570570, 510510
Offset: 1

Views

Author

Philippe Deléham, Jun 03 2015

Keywords

Comments

Triangle read by rows, truncated rows of the array in A185973.
Reversal of A077011.

Examples

			Triangle begins:
      1;
      3,     2;
     15,    10,    6;
    105,    70,   42,   30;
   1155,   770,  462,  330,  210;
  15015, 10010, 6006, 4290, 2730, 2310;
  ...
		

Crossrefs

Row sums: A024451.
T(n,1) = A070826(n).
T(n,n) = A002110(n-1).
For 2 <= n <= 9, T(n,2) = A118752(n-2). [corrected by Peter Munn, Jan 13 2018]
T(n,k) = A121281(n,k), but the latter has an extra column (0).

Programs

  • Maple
    T:= n-> (m-> seq(m/ithprime(j), j=1..n))(mul(ithprime(i), i=1..n)):
    seq(T(n), n=1..10);  # Alois P. Heinz, Jun 18 2015
  • Mathematica
    T[1, 1] = 1; T[n_, n_] := T[n, n] = Prime[n-1]*T[n-1, n-1];
    T[n_, k_] := T[n, k] = Prime[n]*T[n-1, k];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 26 2016 *)

Formula

T(1,1) = 1, T(n,k) = A000040(n)*T(n-1,k) for k < n, T(n,n) = A000040(n-1) * T(n-1,n-1).