A258583 Number of solid standard Young tableaux of shape [[{n}^n],[n]].
1, 1, 16, 5471, 75965484, 70692556053053, 6614511157454872712100, 87353366195666890516586545068535, 217757982462900115559339884671224174403391534, 132100470099008733697710444705793312015509514686031193798241, 24431421930145927713526351934816506384811205836191828228900485331569907542066
Offset: 0
Keywords
Links
- S. B. Ekhad, D. Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux, arXiv:1202.6229v1 [math.CO], 2012.
- Wikipedia, Young tableau
Programs
-
Maple
b:= proc(l) option remember; local m; m:= nops(l); `if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]> `if`(i=m or nops(l[i+1])
`if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop( j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m)) end: a:= n-> b([[n$n], [n]]): seq(a(n), n=0..8); -
Mathematica
b[l_] := b[l] = With[{m = Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[ If[l[[i, j]] > If[i == m || Length[l[[i+1]]]
If[Length[l[[i]]] == j, 0, l[[i, j+1]]], b[ReplacePart[l, i -> ReplacePart[ l[[i]], j -> l[[i, j]]-1]]], 0], {j, Length[l[[i]]]}], {i, m}]]]; a[n_] := b[{Array[n&, n], {n}}]; Table[a[n], {n, 0, 8}] (* Jean-François Alcover, Aug 25 2021, after Alois P. Heinz *)
Formula
a(n) = A214722(n,n).