A258593 Expansion of (phi(x^2) * psi(x^2) / phi(-x)^2)^2 in powers of x where phi(), psi() are Ramanujan theta functions.
1, 8, 46, 208, 805, 2776, 8742, 25584, 70450, 184232, 460832, 1108848, 2578295, 5814992, 12760598, 27317056, 57174768, 117223008, 235818894, 466154416, 906606234, 1736736024, 3280271526, 6114139616, 11255369609, 20478505104, 36849912318, 65619691088
Offset: 0
Keywords
Examples
G.f. = 1 + 8*x + 46*x^2 + 208*x^3 + 805*x^4 + 2776*x^5 + 8742*x^6 + ... G.f. = q + 8*q^3 + 46*q^5 + 208*q^7 + 805*q^9 + 2776*q^11 + 8742*q^13 + ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A260186.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ (1/4) x^(-1/2) (EllipticTheta[ 3, 0, x^2] EllipticTheta[ 2, 0, x] / EllipticTheta[ 4, 0 ,x]^2)^2, {x, 0, n}]; a[ n_] := SeriesCoefficient[ (QPochhammer[ -x^2]^2 QPochhammer[ -x^2, x^2] / EllipticTheta[ 4, 0, x]^2)^2, {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A)^7 / (eta(x + A)^4 * eta(x^2 + A) * eta(x^8 + A)^2))^2, n))};
Formula
Expansion of (f(x^2)^2 / (chi(-x^2) * phi(-x)^2))^2 in powers of x where phi(), chi(), f() are Ramanujan theta functions.
Expansion of q^(-1/2) * (eta(q^4)^7 / (eta(q)^4 * eta(q^2) * eta(q^8)^2))^2 in powers of q.
Euler transform of period 8 sequence [ 8, 10, 8, -4, 8, 10, 8, 0, ...].
-4 * a(n) = A260186(2*n + 1).
a(n) ~ exp(2*Pi*sqrt(n)) / (256*n^(3/4)). - Vaclav Kotesovec, Nov 15 2017
Comments