cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258620 Number of tanglegrams of size n.

Original entry on oeis.org

1, 1, 2, 13, 114, 1509, 25595, 535753, 13305590, 382728552, 12515198465, 458621603279, 18619063906689, 829607273337513, 40253392454978755, 2112878091130119496, 119296114546292088543, 7209829960147215492897, 464413707136960430809460, 31762965767675300603026848
Offset: 1

Views

Author

Matjaz Konvalinka, Jun 18 2015

Keywords

References

  • R. Page, Tangled trees: phylogeny, cospeciation, and coevolution, The University of Chicago Press, 2002.

Programs

  • Mathematica
    r[h_, n_, s_] :=
      r[h, n, s] =
       If[n == 0, 1,
        Sum[Product[(2 (s + j 2^h) - 1)^2/(j 2^h), {j, m}] r[
           h + 1, (n - m)/2, s + m 2^h], {m, n, 0, -2}]];
    tang[n_] := r[0, n, 0]/(2 n - 1)^2;

Formula

a(n) = Sum_{lambda binary partition of n} (Product_{i=2..l(lambda)} (2(lambda_i+...+lambda_l)-1)^2)/z_lambda.
a(n) ~ 2^(2*n-3/2) * n^(n-5/2) / (sqrt(Pi) * exp(n-1/8)).