A258487
Number of tangled chains of length k=4.
Original entry on oeis.org
1, 1, 14, 2140, 1017219, 1110178602, 2320017306125, 8278981347401059, 46556715158334549170, 388779284837787599307987, 4605471565794120802036550000, 74633554055057890778698344509705, 1606481673354648219373898238155693682, 44821655543075499856527523557216582931002
Offset: 1
- R. Page, Tangled trees: phylogeny, cospeciation, and coevolution, The University of Chicago Press, 2002.
A258488
Number of tangled chains of length k=5.
Original entry on oeis.org
1, 1, 41, 31732, 106420469, 1046976648840, 24085106680575625, 1117767454807330938472, 94308987414050519542935029, 13390317159105772877158700776107, 3014130596940522685213135526859317500, 1025828273466214412416440210115479183065903, 507888918625036626314714587415852381698509422634
Offset: 1
- R. Page, Tangled trees: phylogeny, cospeciation, and coevolution, The University of Chicago Press, 2002.
A258489
Number of tangled chains of length k=6.
Original entry on oeis.org
1, 1, 122, 474883, 11168414844, 989169269347359, 250335000079534559375, 151038989624520433840089358, 191158216491241179675824199407135, 461408865973380293005829125668717407727, 1973397409908124305318632313047269426852165625, 14104214451439837037643144221899175649593123932192274
Offset: 1
- R. Page, Tangled trees: phylogeny, cospeciation, and coevolution, The University of Chicago Press, 2002.
A259114
Number of rooted binary unordered tanglegrams of size n.
Original entry on oeis.org
1, 1, 2, 10, 69, 807, 13048, 269221, 6660455, 191411477, 6257905519, 229312906604, 9309547057292, 414803750101863
Offset: 1
- S. C. Billey, M. Konvalinka, and F. A. Matsen IV, On the enumeration of tanglegrams and tangled chains, arXiv:1507.04976 [math.CO], 2015.
- Ira M. Gessel, Counting tanglegrams with species, arXiv:1509.03867 [math.CO], (13-September-2015)
- F. A. Matsen IV, S. C. Billey, D. A. Kas, and M. Konvalinka, Tanglegrams: a reduction tool for mathematical phylogenetics, arXiv:1507.04784 [q-bio.PE], 2015.
- Frederick A. Matsen, Sage/GAP4 Code for generating tanglegrams
A258485
Number of tangled chains of length k=7.
Original entry on oeis.org
1, 1, 365, 7119961, 1172597933594, 934741501255380321, 2602204282373953017437500, 20410544568790568555722851029455, 387481340785957748099474582410763014214, 15899856312608503503306403988460714538830399657
Offset: 1
- R. Page, Tangled trees: phylogeny, cospeciation, and coevolution, The University of Chicago Press, 2002.
A259115
Number of unrooted binary ordered tanglegrams of size n.
Original entry on oeis.org
1, 1, 1, 2, 4, 31, 243, 3532, 62810, 1390718, 36080361, 1076477512, 36281518847, 1363869480379, 56587508558171, 2569141702825037, 126714642738385906, 6747643861563535720, 385875940575529343271, 23588199955061659841248, 1535037278334227258123709, 105961521687913311720698169
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..50
- S. C. Billey, M. Konvalinka, and F. A. Matsen IV, On the enumeration of tanglegrams and tangled chains, arXiv:1507.04976 [math.CO], 2015.
- Ira M. Gessel, Counting tanglegrams with species, arXiv:1509.03867 [math.CO], (13-September-2015)
- F. A. Matsen IV, S. C. Billey, D. A. Kas, and M. Konvalinka, Tanglegrams: a reduction tool for mathematical phylogenetics, arXiv:1507.04784 [q-bio.PE], 2015.
- Frederick A. Matsen, Sage/GAP4 Code for generating tanglegrams
-
\\ See links in A339645 for combinatorial species functions.
rootedBinTrees(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, n, v[n]=(sum(j=1, n-1, v[j]*v[n-j]) + if(n%2, 0, sRaiseCI(v[n/2], n/2, 2)))/2); x*Ser(v)}
cycleIndexSeries(n)={my(g=rootedBinTrees(n), u = g + (sRaise(g,3) - g^3)/3); sCartProd(u,u)}
NumUnlabeledObjsSeq(cycleIndexSeries(12)) \\ Andrew Howroyd, Dec 24 2020
A349408
Number of planar tanglegrams of size n.
Original entry on oeis.org
1, 1, 2, 11, 76, 649, 6173, 63429, 688898, 7808246, 91537482, 1102931565, 13594564857, 170804438005, 2181426973452, 28257128116954, 370581034530685, 4913238656392058, 65773613137623085, 888155942037325535, 12086555915234897267, 165641209243876120135
Offset: 1
For n=4, there are 11 planar tanglegrams of size 4.
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- Alexander E. Black, Kevin Liu, Alex Mcdonough, Garrett Nelson, Michael C. Wigal, Mei Yin, and Youngho Yoo, Sampling planar tanglegrams and pairs of disjoint triangulations, arXiv:2304.05318 [math.CO], 2023.
- Dimbinaina Ralaivaosaona, Jean Bernoulli Ravelomanana and Stephan Wagner, Counting Planar Tanglegrams, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Article 32.
-
\\ here H(n)/x^2 is g.f. of A257887.
H(n)={(x - x^2 - serreverse(sum(k=0, n+1, (binomial(2*k, k)/(k+1))^2*x^(k+1)) + O(x^(n+3))))/2}
seq(n)={my(h=H(n-2), p=O(x)); for(n=1, n, p = subst(h + O(x*x^n), x, p) + x + (p^2 + subst(p,x,x^2))/2); Vec(p)} \\ Andrew Howroyd, Nov 18 2021
A259116
Number of unrooted binary unordered tanglegrams of size n.
Original entry on oeis.org
1, 1, 1, 2, 4, 22, 145, 1875, 31929, 698183, 18056523, 538340256, 18141423039, 681939320185
Offset: 1
- S. C. Billey, M. Konvalinka, and F. A. Matsen IV, On the enumeration of tanglegrams and tangled chains, arXiv:1507.04976 [math.CO], 2015.
- Ira M. Gessel, Counting tanglegrams with species, arXiv:1509.03867 [math.CO], (13-September-2015)
- F. A. Matsen IV, S. C. Billey, D. A. Kas, and M. Konvalinka, Tanglegrams: a reduction tool for mathematical phylogenetics, arXiv:1507.04784 [q-bio.PE], 2015.
- Frederick A. Matsen, Sage/GAP4 Code for generating tanglegrams
A339234
Number of series-reduced tanglegrams with n unlabeled leaves.
Original entry on oeis.org
1, 1, 5, 51, 757, 16416, 461231, 16021550, 662197510, 31749450007, 1732478051823, 106025572201434, 7192665669790893, 535756912504764218, 43471544417828923777, 3816784803681841133512, 360546156617986177328681, 36462349359125513109697520, 3930704977357944446111295571
Offset: 1
Two of the 5 tanglegrams for a(3) are illustrated (A,B are the roots of the trees and o marks the leaves that are shared between the two trees)
A A
/ \ / \
/ / \ / / \
o o o o o o
\ | / \ / /
\ | / \ /
B B
-
\\ See links in A339645 for combinatorial species functions.
seriesReducedTrees(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n )); x*Ser(v)}
NumUnlabeledObjsSeq(sCartPower(seriesReducedTrees(15), 2))
Showing 1-9 of 9 results.
Comments