cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258656 O.g.f.: exp( Sum_{n>=1} A256357(n^2)*x^n/n ), where exp( Sum_{n>=1} A256357(n)*x^n/n ) = 1 + Sum_{n>=1} x^(n^2) + x^(2*n^2).

Original entry on oeis.org

1, 1, 3, 5, 2, 10, 13, 23, 43, 57, 66, 96, 183, 229, 375, 509, 619, 883, 1395, 1947, 2487, 3603, 4627, 6273, 8934, 12432, 15637, 20943, 29147, 37613, 50296, 67870, 88542, 113240, 153682, 201900, 257125, 338397, 446354, 570098, 734576, 966634, 1234879, 1574763, 2048746, 2634002, 3322639, 4268611
Offset: 0

Views

Author

Paul D. Hanna, Jun 06 2015

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 5*x^3 + 2*x^4 + 10*x^5 + 13*x^6 + 23*x^7 +...
where
log(A(x)) = x + 5*x^2/2 + 7*x^3/3 - 19*x^4/4 + 21*x^5/5 + 59*x^6/6 + 57*x^7/7 - 115*x^8/8 + 61*x^9/9 + 145*x^10/10 +...+ A256357(n^2)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {A258655(n) = local(L=x); L = log(1 + sum(k=1, n+1, x^(k^2) + x^(2*k^2)) +x*O(x^(n^2))); n^2*polcoeff(L, n^2)}
    {a(n) = polcoeff( exp( sum(k=1,n+1, A258655(k)*x^k/k) +x*O(x^n) ), n)}
    for(n=1, 121, print1(a(n), ", "))
    
  • PARI
    /* Much faster: */
    {A258655(n) = -sigma(n^2) + sumdiv(n^2, d, if(d%4==2, d)) + 2*sumdiv(n^2, d, if((d%8)%3==1, d))}
    {a(n) = polcoeff( exp( sum(k=1,n+1, A258655(k)*x^k/k) +x*O(x^n) ), n)}
    for(n=1,121, print1(a(n), ", "))