A258671 Number of partitions of (n!)^2 into parts that are at most n.
0, 1, 3, 127, 1361953, 14961046326601, 433366367372593816560481, 74029504174329565838647515081008812321, 147684970947386323832216294475743896349724799651361817601
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..23
- A. V. Sills and D. Zeilberger, Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz) (arXiv:1108.4391 [math.CO])
Formula
a(n) ~ n * (n!)^(2*n-4).