cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A236810 Number of solutions to Sum_{k=1..n} k*c(k) = n! , c(k) >= 0.

Original entry on oeis.org

0, 1, 2, 7, 169, 91606, 2407275335, 4592460368601183, 855163933625625205568537, 20560615981766266405801870502139241, 82864945825700191674729490954631752385038099201, 70899311833745096407560015806403481692583415598602691709750081
Offset: 0

Views

Author

Wouter Meeussen, Feb 08 2014

Keywords

Comments

a(n) is the number of partitions of n! into parts that are at most n. a(3) = 7: [1,1,1,1,1,1], [2,1,1,1,1], [2,2,1,1], [2,2,2], [3,1,1,1], [3,2,1], [3,3]. - Alois P. Heinz, Feb 08 2014

Examples

			for n=3, the 7 solutions are: 3! = 6,0,0 ; 4,1,0 ; 2,2,0 ; 0,3,0 ; 3,0,1 ; 1,1,1 ; 0,0,2.
		

Crossrefs

Programs

  • Mathematica
    Table[Coefficient[Series[Product[1/(1- x^k),{k,n}],{x,0,n!}],x^(n!)] ,{n,7}]

Formula

a(n) = [x^(n!)] Product_{k=1..n} 1/(1-x^k).
a(n) ~ n * (n!)^(n-3) ~ n^(n^2-5*n/2-1/2) * (2*Pi)^((n-3)/2) / exp(n*(n-3)-1/12). - Vaclav Kotesovec, Jun 05 2015

Extensions

a(8)-a(11) from Alois P. Heinz, Feb 08 2014

A258668 Number of partitions of (n-1)! into parts that are at most n.

Original entry on oeis.org

0, 1, 1, 2, 9, 333, 436140, 43079658188, 416768277321177570, 479533252041533318548951081, 82915824358567616469138110469031459201, 2733701379858734057121091262990514105871808751388190, 21440005073020480325389224271234447054906430340227337359088146738881
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 07 2015

Keywords

Crossrefs

Formula

a(n) ~ (n!)^(n-3) / n^(n-2).

A258669 Number of partitions of 2*n! into parts that are at most n.

Original entry on oeis.org

0, 1, 3, 19, 1033, 1302311, 74312057469, 291484874476601933, 109290159404495354765494065, 5262212497884462986538879797523944401, 42425405450182072688801993326226988336684453926401, 72600595215718916449806606426629386781199080157371905867835756161
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 07 2015

Keywords

Crossrefs

Formula

a(n) ~ n * 2^(n-1) * (n!)^(n-3).

A258670 Number of partitions of (2*n)! into parts that are at most n.

Original entry on oeis.org

0, 1, 13, 43561, 455366036161, 60209252317216962943201, 291857679749953126623181556402787323521, 120972618144269517756284629487432992029777542693069847287041
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 07 2015

Keywords

Comments

Conjecture: If f(n) >= O(n^4) then "number of partitions of f(n) into parts that are at most n" is asymptotic to f(n)^(n-1) / (n!*(n-1)!). For the examples see A238016 and A238010.

Crossrefs

Formula

a(n) ~ (2*n)!^(n-1) / (n!*(n-1)!).
Showing 1-4 of 4 results.