A258708 Triangle read by rows: T(i,j) = integer part of binomial(i+j, i-j)/(2*j+1) for i >= 1 and j = 0..i-1.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 7, 4, 1, 1, 7, 14, 12, 5, 1, 1, 9, 25, 30, 18, 6, 1, 1, 12, 42, 66, 55, 26, 7, 1, 1, 15, 66, 132, 143, 91, 35, 8, 1, 1, 18, 99, 245, 334, 273, 140, 45, 9, 1, 1, 22, 143, 429, 715, 728, 476, 204, 57, 10, 1
Offset: 1
Examples
Triangle T(i, j) (with rows i >= 1 and columns j >= 0) begins as follows: 1; 1, 1; 1, 2, 1; 1, 3, 3, 1; 1, 5, 7, 4, 1; 1, 7, 14, 12, 5, 1; 1, 9, 25, 30, 18, 6, 1; 1, 12, 42, 66, 55, 26, 7, 1; 1, 15, 66, 132, 143, 91, 35, 8, 1; 1, 18, 99, 245, 334, 273, 140, 45, 9, 1; ...
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
- R. P. Loh, A. G. Shannon, and A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
Crossrefs
Programs
-
Haskell
a258708 n k = a258708_tabl !! (n-1) !! k a258708_row n = a258708_tabl !! (n-1) a258708_tabl = zipWith (zipWith ((round .) . ((/) `on` fromIntegral))) a258993_tabl a158405_tabl -- Reinhard Zumkeller, Jun 22 2015, Jun 16 2015
Extensions
Corrected T(8,5) = 26 from Reinhard Zumkeller, Jun 13 2015
Comments