cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258708 Triangle read by rows: T(i,j) = integer part of binomial(i+j, i-j)/(2*j+1) for i >= 1 and j = 0..i-1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 7, 4, 1, 1, 7, 14, 12, 5, 1, 1, 9, 25, 30, 18, 6, 1, 1, 12, 42, 66, 55, 26, 7, 1, 1, 15, 66, 132, 143, 91, 35, 8, 1, 1, 18, 99, 245, 334, 273, 140, 45, 9, 1, 1, 22, 143, 429, 715, 728, 476, 204, 57, 10, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 12 2015

Keywords

Comments

In the Loh-Shannon-Horadam paper, Table 3 contains a typo (see Extensions lines).
T(n,k) = round(A258993(n,k)/(2*k+1)). - Reinhard Zumkeller, Jun 22 2015
From Reinhard Zumkeller, Jun 23 2015: (Start)
(using tables 4 and 5 of the Loh-Shannon-Horadam paper, p. 8f).
T(n, n-1) = 1;
T(n, n-2) = n for n > 1;
T(n, n-3) = A000969(n-3) for n > 2;
T(n, n-4) = A000330(n-3) for n > 3;
T(n, n-5) = T(2*n-7, 2) = A000970(n) for n > 4;
T(n, n-6) = A000971(n) for n > 5;
T(n, n-7) = A000972(n) for n > 6;
T(n, n-8) = A000973(n) for n > 7;
T(n, 1) = A001840(n-1) for n > 1;
T(2*n, n) = A001764(n);
T(3*n-1, 1) = A000326(n);
T(3*n, 2*n) = A002294(n);
T(4*n, 3*n) = A002296(n). (End)

Examples

			Triangle T(i, j) (with rows i >= 1 and columns j >= 0) begins as follows:
  1;
  1,  1;
  1,  2,  1;
  1,  3,  3,   1;
  1,  5,  7,   4,   1;
  1,  7, 14,  12,   5,   1;
  1,  9, 25,  30,  18,   6,   1;
  1, 12, 42,  66,  55,  26,   7,  1;
  1, 15, 66, 132, 143,  91,  35,  8, 1;
  1, 18, 99, 245, 334, 273, 140, 45, 9, 1;
  ...
		

Crossrefs

Programs

  • Haskell
    a258708 n k = a258708_tabl !! (n-1) !! k
    a258708_row n = a258708_tabl !! (n-1)
    a258708_tabl = zipWith (zipWith ((round .) . ((/) `on` fromIntegral)))
                           a258993_tabl a158405_tabl
    -- Reinhard Zumkeller, Jun 22 2015, Jun 16 2015

Extensions

Corrected T(8,5) = 26 from Reinhard Zumkeller, Jun 13 2015