cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258723 Expansion of 1/(1-12*x+48*x^2)^(1/2).

Original entry on oeis.org

1, 6, 30, 108, 54, -3564, -41364, -314280, -1798362, -6972156, -1793340, 283697640, 3341429820, 25984971720, 151750943640, 596184213168, 101849014278, -25747257110940, -305001821608236, -2392882855430328, -14088646343199276, -55649498057805096, -7100681134947480
Offset: 0

Views

Author

Sergei N. Gladkovskii, Jun 08 2015

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-12*x+48*x^2)^(1/2), {x, 0, 20}], x]  (* Vaclav Kotesovec, Jun 08 2015 *)
  • PARI
    Vec(1/(1-12*x+48*x^2)^(1/2) + x^50) \\ G. C. Greubel, Feb 14 2017

Formula

G.f.: 1/(1-12*x+48*x^2)^(1/2).
E.g.f.: exp(6*x)*BesselJ(0,2*sqrt(3)*x).
If mod(n,6)=4 then a(n) ~ (-1)^((n+8)/6) * 3^((n+1)/2) * 4^(n-1) / (sqrt(Pi) * n^(3/2)), else a(n) ~ 3^(n/2) * 2^(2*n+1) * cos(Pi*(n-1)/6) / sqrt(Pi*n). - Vaclav Kotesovec, Jun 08 2015
D-finite with recurrence n*a(n) +6*(-2*n+1)*a(n-1) +48*(n-1)*a(n-2)=0. [Belbachir]