cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258747 Expansion of chi(-x) * f(x^3) * f(-x^6) in powers of x where chi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 0, 0, 0, -1, -2, 2, 1, 0, 0, 2, 0, 0, -2, 0, 1, 0, 0, 0, 0, -1, -2, 0, 2, -2, 0, 2, 0, -2, 0, 0, 2, -1, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, -2, 2, 1, -2, 0, 2, 0, 0, -4, 0, 2, -1, 0, 0, 0, 0, -2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Michael Somos, Jun 09 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x - x^5 - 2*x^6 + 2*x^7 + x^8 + 2*x^11 - 2*x^14 + x^16 - x^21 + ...
G.f. = q - q^4 - q^16 - 2*q^19 + 2*q^22 + q^25 + 2*q^34 - 2*q^43 + q^49 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] QPochhammer[ -x^3] QPochhammer[ x^6], {x, 0, n}];
    a[ n_] := If[ n < 0, 0, (-1)^Quotient[ 3 n, 2] DivisorSum[ 3 n + 1, KroneckerSymbol[-2, #] &]];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A)^4 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A)), n))};
    
  • PARI
    {a(n) = if( n<0, 0, (-1)^(3*n\2) * sumdiv(3*n + 1, d, kronecker( -2, d)))};

Formula

Expansion of q^(-1/3) * eta(q) * eta(q^6)^4 / (eta(q^2) * eta(q^3) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ -1, 0, 0, 0, -1, -3, -1, 0, 0, 0, -1, -2, ...].
G.f.: Product_{k>0} (1 + x^(3*k)) * (1 - x^(6*k))^2 / ( (1 + x^k) * (1 + x^(6*k)) ).
-2 * a(n) = A082564(3*n + 1). a(n) = A129134(3*n + 1).
a(4*n + 3) = 2 * A257402(n-1). a(8*n) = A257398(n). a(8*n + 2) = a(8*n + 4) = a(16*n + 3) = a(16*n + 15) = 0. a(16*n + 7) = 2 * A255318(n). a(16*n + 11) = 2 * A255319(n).