A258754 Decimal expansion of Ls_8(Pi), the value of the 8th basic generalized log-sine integral at Pi.
5, 0, 4, 0, 0, 3, 9, 8, 7, 9, 1, 1, 5, 0, 4, 5, 1, 6, 4, 3, 4, 5, 6, 2, 1, 4, 3, 8, 3, 3, 5, 3, 9, 3, 1, 5, 9, 3, 0, 5, 3, 7, 5, 9, 6, 1, 6, 7, 7, 4, 8, 2, 0, 0, 2, 0, 0, 2, 1, 3, 8, 5, 3, 9, 1, 6, 1, 3, 4, 1, 1, 9, 9, 0, 5, 7, 5, 1, 4, 0, 6, 2, 1, 5, 8, 9, 5, 4, 2, 4, 5, 3, 0, 3, 2, 2, 3, 3, 5, 7, 0, 5, 3, 8, 6
Offset: 4
Examples
5040.03987911504516434562143833539315930537596167748200200213853916...
Links
- Jonathan M. Borwein, Armin Straub, Special Values of Generalized Log-sine Integrals.
Crossrefs
Programs
-
Mathematica
RealDigits[(2835/4)*Pi*Zeta[7] + (315/8)*Pi^3*Zeta[5] + (133/32)*Pi^5*Zeta[3], 10, 105] // First
-
PARI
-intnum(t=0,Pi,log(2*sin(t/2))^7) \\ Hugo Pfoertner, Jul 22 2020
Formula
-Integral_{t=0..Pi} log(2*sin(t/2))^7 = (2835/4)*Pi*zeta(7) + (315/8)*Pi^3*zeta(5) + (133/32)*Pi^5*zeta(3).
Also equals 7th derivative of -Pi*binomial(x, x/2) at x=0.