cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258763 Decimal expansion of Ls_7(Pi/3), the value of the 7th basic generalized log-sine integral at Pi/3 (negated).

Original entry on oeis.org

7, 2, 0, 1, 2, 4, 5, 6, 8, 2, 2, 6, 3, 3, 1, 8, 0, 1, 0, 5, 3, 0, 2, 9, 3, 3, 1, 8, 3, 5, 1, 5, 6, 5, 6, 8, 9, 0, 0, 6, 9, 3, 5, 5, 0, 2, 6, 5, 8, 0, 8, 8, 1, 3, 8, 9, 3, 0, 1, 3, 7, 1, 1, 6, 7, 7, 8, 2, 9, 1, 8, 4, 5, 9, 9, 7, 3, 0, 1, 2, 2, 7, 2, 2, 9, 5, 2, 7, 7, 7, 1, 1, 9, 7, 8, 9, 2, 3, 8, 2, 3, 5, 2
Offset: 3

Views

Author

Jean-François Alcover, Jun 09 2015

Keywords

Examples

			-720.1245682263318010530293318351565689006935502658088138930137116778...
		

Crossrefs

Cf. A258749 (Ls_3(Pi)), A258750 (Ls_4(Pi)), A258751 (Ls_5(Pi)), A258752 (Ls_6(Pi)), A258753 (Ls_7(Pi)), A258754 (Ls_8(Pi)).
Cf. A143298 (Ls_2(Pi/3)), A258759 (Ls_3(Pi/3)), A258760 (Ls_4(Pi/3)), A258761 (Ls_5(Pi/3)), A258762 (Ls_6(Pi/3)).

Programs

  • Mathematica
    RealDigits[-720*HypergeometricPFQ[Table[1/2, {7}], Table[3/2, {6}], 1/4], 10, 103] // First

Formula

-Integral_{0..Pi/3} log(2*sin(x/2))^5 dx = -74369*Pi^7/326592 - (15/2) * Pi * Zeta[3]^2 + 135*Gl_{6, 1}(Pi/3), where Gl is the multiple Glaisher function.
Also equals -720 * 7F6(1/2,1/2,...; 3/2,3/2,...; 1/4) (with 7F6 the hypergeometric function).