A258777 Number of points of projective spaces on finite fields.
1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 20, 21, 24, 26, 28, 30, 31, 32, 33, 38, 40, 42, 44, 48, 50, 54, 57, 60, 62, 63, 65, 68, 72, 73, 74, 80, 82, 84, 85, 90, 91, 98, 102, 104, 108, 110, 114, 121, 122, 126, 127, 128, 129, 132, 133, 138, 140, 150, 152, 156, 158, 164, 168, 170, 174, 180, 182, 183, 192, 194, 198, 200
Offset: 1
Examples
7 = (2^(1*3) - 1)/(2^1 - 1) so 7 is in the sequence. 10 = (3^(2*2) - 1)/(3^2 - 1) so 10 is in the sequence.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Pierre-Emmanuel Caprace, Pierre de la Harpe, Groups with irreducibly unfaithful subsets for unitary representations, arXiv:1807.04992 [math.GR], 2018.
- Eric Weisstein's World of Mathematics, Repunit
Programs
-
Mathematica
max = 200; Join[{1}, Select[{#, DivisorSigma[Range[Max[1, Log[#, max] // Floor]], #]}& /@ Range[2, max], PrimePowerQ[#[[1]]]&][[All, 2]] // Flatten // Union] // Select[#, # <= max&]& (* Jean-François Alcover, Jun 24 2015 after Giovanni Resta *)
-
PARI
list(lim)=my(v=List([1]),t); lim\=1; if(lim<2,lim=2); for(k=1,logint(lim - 1, 2), for(n=2,logint(lim*(2^k - 1) + 1, 2)\k, forprime(p=2,, t=(p^(k*n) - 1)/(p^k - 1); if(t>lim,break); listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Jun 24 2015
Comments